Билинейные и квадратичные формы. Приведение квадратичной формы к каноническому виду

Дана квадратичная форма (2) A (x , x ) = , где x = (x 1 , x 2 , …, x n ). Рассмотрим квадратичную форму в пространстве R 3 , то есть x = (x 1 , x 2 , x 3), A (x , x ) =
+
+
+
+
+
+ +
+
+
=
+
+
+ 2
+ 2
+ + 2
(использовали условие симметричности формы, а именно а 12 = а 21 , а 13 = а 31 , а 23 = а 32). Выпишем матрицу квадратичной формы A в базисе {e }, A (e ) =
. При изменении базиса матрица квадратичной формы меняется по формуле A (f ) = C t A (e )C , где C – матрица перехода от базиса {e } к базису {f }, а C t – транспонированная матрица C .

Определение 11.12. Вид квадратичной формы с диагональной матрицей называется каноническим .

Итак, пусть A (f ) =
, тогда A "(x , x ) =
+
+
, где x " 1 , x " 2 , x " 3 – координаты вектора x в новом базисе {f }.

Определение 11.13. Пусть в n V выбран такой базис f = {f 1 , f 2 , …, f n }, в котором квадратичная форма имеет вид

A (x , x ) =
+
+ … +
, (3)

где y 1 , y 2 , …, y n – координаты вектора x в базисе {f }. Выражение (3) называется каноническим видом квадратичной формы. Коэффициенты  1 , λ 2 , …, λ n называются каноническими ; базис, в котором квадратичная форма имеет канонический вид, называется каноническим базисом .

Замечание . Если квадратичная форма A (x , x ) приведена к каноническому виду, то, вообще говоря, не все коэффициенты  i отличны от нуля. Ранг квадратичной формы равен рангу ее матрицы в любом базисе.

Пусть ранг квадратичной формы A (x , x ) равен r , где r n . Матрица квадратичной формы в каноническом виде имеет диагональный вид. A (f ) =
, поскольку ее ранг равен r , то среди коэффициентов  i должно быть r , не равных нулю. Отсюда следует, что число отличных от нуля канонических коэффициентов равно рангу квадратичной формы.

Замечание . Линейным преобразованием координат называется переход от переменных x 1 , x 2 , …, x n к переменным y 1 , y 2 , …, y n , при котором старые переменные выражаются через новые переменные с некоторыми числовыми коэффициентами.

x 1 = α 11 y 1 + α 12 y 2 + … + α 1 n y n ,

x 2 = α 2 1 y 1 + α 2 2 y 2 + … + α 2 n y n ,

………………………………

x 1 = α n 1 y 1 + α n 2 y 2 + … + α nn y n .

Так как каждому преобразованию базиса отвечает невырожденное линейное преобразование координат, то вопрос о приведении квадратичной формы к каноническому виду можно решать путем выбора соответствующего невырожденного преобразования координат.

Теорема 11.2 (основная теорема о квадратичных формах). Всякая квадратичная форма A (x , x ), заданная в n -мерном векторном пространстве V , с помощью невырожденного линейного преобразования координат может быть приведена к каноническому виду.

Доказательство . (Метод Лагранжа) Идея этого метода состоит в последовательном дополнении квадратного трехчлена по каждой переменной до полного квадрата. Будем считать, что A (x , x ) ≠ 0 и в базисе e = {e 1 , e 2 , …, e n } имеет вид (2):

A (x , x ) =
.

Если A (x , x ) = 0, то (a ij ) = 0, то есть форма уже каноническая. Формулу A (x , x ) можно преобразовать так, чтобы коэффициент a 11 ≠ 0. Если a 11 = 0, то коэффициент при квадрате другой переменной отличен от нуля, тогда при помощи перенумерации переменных можно добиться, чтобы a 11 ≠ 0. Перенумерация переменных является невырожденным линейным преобразованием. Если же все коэффициенты при квадратах переменных равны нулю, то нужные преобразования получаются следующим образом. Пусть, например, a 12 ≠ 0 (A (x , x ) ≠ 0, поэтому хотя бы один коэффициент a ij ≠ 0). Рассмотрим преобразование

x 1 = y 1 – y 2 ,

x 2 = y 1 + y 2 ,

x i = y i , при i = 3, 4, …, n .

Это преобразование невырожденное, так как определитель его матрицы отличен от нуля
= = 2 ≠ 0.

Тогда 2a 12 x 1 x 2 = 2 a 12 (y 1 – y 2)(y 1 + y 2) = 2
– 2
, то есть в форме A (x , x ) появятся квадраты сразу двух переменных.

A (x , x ) =
+ 2
+ 2
+
. (4)

Преобразуем выделенную сумму к виду:

A (x , x ) = a 11
, (5)

при этом коэффициенты a ij меняются на . Рассмотрим невырожденное преобразование

y 1 = x 1 + + … + ,

y 2 = x 2 ,

y n = x n .

Тогда получим

A (x , x ) =
. (6).

Если квадратичная форма
= 0, то вопрос о приведении A (x , x ) к каноническому виду решен.

Если эта форма не равна нулю, то повторяем рассуждения, рассматривая преобразования координат y 2 , …, y n и не меняя при этом координату y 1 . Очевидно, что эти преобразования будут невырожденными. За конечное число шагов квадратичная форма A (x , x ) будет приведена к каноническому виду (3).

Замечание 1. Нужное преобразование исходных координат x 1 , x 2 , …, x n можно получить путем перемножения найденных в процессе рассуждений невырожденных преобразований: [x ] = A [y ], [y ] = B [z ], [z ] = C [t ], тогда [x ] = A B [z ] = A B C [t ], то есть [x ] = M [t ], где M = A B C .

Замечание 2. Пусть A (x , x ) = A (x , x ) =
+
+ …+
, где  i ≠ 0, i = 1, 2, …, r , причем  1 > 0, λ 2 > 0, …, λ q > 0, λ q +1 < 0, …, λ r < 0.

Рассмотрим невырожденное преобразование

y 1 = z 1 , y 2 = z 2 , …, y q = z q , y q +1 =
z q +1 , …, y r = z r , y r +1 = z r +1 , …, y n = z n . В результате A (x , x ) примет вид: A (x , x ) = + + … + – … – , который называется нормальным видом квадратичной формы .

Пример 11.1. Привести к каноническому виду квадратичную форму A (x , x ) = 2x 1 x 2 – 6x 2 x 3 + 2x 3 x 1 .

Решение . Поскольку a 11 = 0, используем преобразование

x 1 = y 1 – y 2 ,

x 2 = y 1 + y 2 ,

x 3 = y 3 .

Это преобразование имеет матрицу A =
, то есть [x ] = A [y ] получим A (x , x ) = 2(y 1 – y 2)(y 1 + y 2) – 6(y 1 + y 2)y 3 + 2y 3 (y 1 – y 2) =

2– 2– 6y 1 y 3 – 6y 2 y 3 + 2y 3 y 1 – 2y 3 y 2 = 2– 2– 4y 1 y 3 – 8y 3 y 2 .

Поскольку коэффициент при не равен нулю, можно выделить квадрат одного неизвестного, пусть это будет y 1 . Выделим все члены, содержащие y 1 .

A (x , x ) = 2(– 2 y 1 y 3) – 2– 8y 3 y 2 = 2(– 2 y 1 y 3 + ) – 2– 2– 8y 3 y 2 = 2(y 1 – y 3) 2 – 2– 2– 8y 3 y 2 .

Выполним преобразование, матрица которого равна B .

z 1 = y 1 – y 3 ,  y 1 = z 1 + z 3 ,

z 2 = y 2 ,  y 2 = z 2 ,

z 3 = y 3 ;  y 3 = z 3 .

B =
, [y ] = B [z ].

Получим A (x , x ) = 2– 2– 8z 2 z 3 . Выделим члены, содержащие z 2 . Имеем A (x , x ) = 2– 2(+ 4z 2 z 3) – 2= 2– 2(+ 4z 2 z 3 + 4) + + 8 – 2 = 2– 2(z 2 + 2z 3) 2 + 6.

Выполняем преобразование с матрицей C :

t 1 = z 1 ,  z 1 = t 1 ,

t 2 = z 2 + 2z 3 ,  z 2 = t 2 – 2t 3 ,

t 3 = z 3 ;  z 3 = t 3 .

C =
, [z ] = C [t ].

Получили: A (x , x ) = 2– 2+ 6 канонический вид квадратичной формы, при этом [x ] = A [y ], [y ] = B [z ], [z ] = C [t ], отсюда [x ] = ABC [t ];

A B C =


=
. Формулы преобразований следующие

x 1 = t 1 – t 2 + t 3 ,

x 2 = t 1 + t 2 – t 3 ,

Приведение квадратичной формы к каноническому виду.

Канонический и нормальный вид квадратичной формы.

Линейные преобразования переменных.

Понятие квадратичной формы.

Квадратичные формы.

Определение: Квадратичной формой от переменных называется однородный многочлен второй степени относительно этих переменных.

Переменные можно рассматривать как аффинные координаты точки арифметического пространства А n или как координаты вектора n-мерного пространства V n . Будем обозначать квадратичную форму от переменных как.

Пример 1:

Если в квадратичной форме уже выполнено приведение подобных членов, то коэффициенты при обозначаются, а при () – . Т.о., считается, что. Квадратичную форму можно записать следующим образом:

Пример 2:

Матрица системы (1):

– называется матрицей квадратичной формы.

Пример: Матрицы квадратичных форм примера 1 имеют вид:

Матрица квадратичной формы примера 2:

Линейным преобразованием переменных называют такой переход от системы переменных к системе переменных, при котором старые переменные выражаются через новые с помощью форм:

где коэффициенты образуют невырожденную матрицу.

Если переменные рассматривать как координаты вектора в евклидовом пространстве относительно некоторого базиса, то линейное преобразование (2) можно рассматривать как переход в этом пространстве к новому базису, относительно которого этот же вектор имеет координаты.

В дальнейшем мы будем рассматривать квадратичные формы только с действительными коэффициентами. Будем считать, что и переменные принимают только действительные значения. Если в квадратичной форме (1) переменные подвергнуть линейному преобразованию (2), то получится квадратичная форма от новых переменных. В дальнейшем мы покажем, при надлежащем выборе преобразования (2) квадратичную форму (1) можно привести к виду, содержащему только квадраты новых переменных, т.е. . Такой вид квадратичной формы называется каноническим . Матрица квадратичной формы в таком случае диагональная: .

Если все коэффициенты могут принимать лишь одно из значений: -1,0,1 соответствующий вид называется нормальным .

Пример: Уравнение центральной кривой второго порядка с помощью перехода к новой системе координат

можно привести к виду: , а квадратичная форма в этом случае примет вид:

Лемма 1: Если квадратичная форма (1) не содержит квадратов переменных, то с помощью линейного преобразования ее можно привести в форму, содержащую квадрат хотя бы одной переменной.

Доказательство: По условию, квадратичная форма содержит только члены с произведениями переменных. Пусть при каких-либо различных значениях i и j отличен от нуля, т.е. – один из таких членов, входящих в квадратичную форму. Если выполнить линейное преобразование, а все остальные не менять, т.е. (определитель этого преобразования отличен от нуля), то в квадратичной форме появится даже два члена с квадратами переменных: . Эти слагаемые не могут исчезнуть при приведении подобных членов, т.к. каждый из оставшихся слагаемых содержит хотя бы одну переменную, отличную или от или от.



Пример:

Лемма 2: Если квадратная форма (1) содержит слагаемое с квадратом переменной , напримери еще хотя бы одно слагаемое с переменной , то с помощью линейного преобразования , f можно перевести в форму от переменных , имеющую вид: (2), где g – квадратичная форма, не содержащая переменной .

Доказательство: Выделим в квадратичной форме (1) сумму членов, содержащих: (3) здесь через g 1 обозначена сумма всех слагаемых, не содержащих.

Обозначим

(4), где через обозначена сумма всех слагаемых, не содержащих.

Разделим обе части (4) на и вычтем полученное равенство из (3), после приведения подобных будем иметь:

Выражение в правой части не содержит переменной и является квадратичной формой от переменных. Обозначим это выражение через g, а коэффициент через, а тогда f будет равно: . Если произвести линейное преобразование: , определитель которого отличен от нуля, то g будет квадратичной формой от переменных, и квадратичная форма f будет приведена к виду (2). Лемма доказана.

Теорема: Любая квадратичная форма может быть приведена к каноническому виду с помощью преобразования переменных.

Доказательство: Проведем индукцию по числу переменных. Квадратичная форма от имеет вид: , которое уже является каноническим. Предположим, что теорема верна для квадратичной формы от n-1 переменных и докажем, что она верна для квадратично формы от n переменных.

Если f не содержит квадратов переменных, то по лемме 1 ее можно привести к виду, содержащему квадрат хотя бы одной переменной, по лемме 2 полученную квадратичную форму можно представить в виде (2). Т.к. квадратичная форма является зависимой от n-1 переменных, то по индуктивному предположению она может быть приведена к каноническому виду с помощью линейного преобразования этих переменных к переменным, если к формулам этого перехода еще добавить формулу, то мы получим формулы линейного преобразования, которое приводит к каноническому виду квадратичную форму, содержащуюся в равенстве (2). Композиция всех рассматриваемых преобразований переменных является искомым линейным преобразованием, приводящим к каноническому виду квадратичную форму (1).

Если квадратичная форма (1) содержит квадрат какой-либо переменной, то лемму 1 применять не нужно. Приведенный способ называется методом Лагранжа .

От канонического вида, где, можно перейти к нормальному виду, где, если, и, если, с помощью преобразования:

Пример: Привести к каноническому виду методом Лагранжа квадратичную форму:

Т.к. квадратичная форма f уже содержит квадраты некоторых переменных, то лемму 1 применять не нужно.

Выделяем члены, содержащие:

3. Чтобы получить линейное преобразование, непосредственно приводящее форму f к виду (4), найдем сначала преобразования, обратные преобразованиям (2) и (3).

Теперь, с помощью этих преобразований построим их композицию:

Если подставить полученные значения (5) в (1), мы сразу же получим представление квадратичной формы в виде (4).

От канонического вида (4) с помощью преобразования

можно перейти к нормальному виду:

Линейное преобразование, приводящее квадратичную форму (1) к нормальному виду, выражается формулами:

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с.

Лекция №26 (II семестр)

Тема: Закон инерции. Положительно определённые формы.

220400 Алгебра и геометрия Толстиков А.В.

Лекции 16. Билинейные и квадратичные формы.

План

1. Билинейная форма и ее свойства.

2. Квадратичная форма. Матрица квадратичной формы. Преобразование координат.

3. Приведение квадратичной формы к каноническому виду. Метод Лагранжа.

4. Закон инерции квадратичных форм.

5. Приведение квадратичной формы к каноническому виду по методу собственных значений.

6. Критерий Сильверста положительной определенности квадратичной формы.

1. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1984.

2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997.

3. Воеводин В.В. Линейная алгебра.. М.: Наука 1980.

4. Сборник задач по для втузов. Линейная алгебра и основы математического анализа. Под ред. Ефимова А.В., Демидовича Б.П.. М.: Наука, 1981.

5. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: Физматлит, 2001.

, , , ,

1. Билинейная форма и ее свойства. Пусть V - n -мерное векторное пространство над полем P.

Определение 1. Билинейной формой , определенной на V, называется такое отображение g : V 2 ® P , которое каждой упорядоченной паре (x , y ) векторов x , y из ставит в V соответствие число из поля P , обозначаемое g (x , y ), и линейное по каждой из переменных x , y , т.е. обладающее свойствами:

1) ("x , y , z ÎV ) g (x + y , z ) = g (x , z ) + g (y , z );

2) ("x , y ÎV ) ("a ÎP ) g (ax , y ) = ag (x , y );

3) ("x , y , z ÎV ) g (x , y + z ) = g (x , y ) + g (x , z );

4) ("x , y ÎV ) ("a ÎP ) g (x , ay ) = ag (x , y ).

Пример 1 . Любое скалярное произведение, определенное на векторном пространстве V является билинейной формой.

2 . Функция h (x , y ) = 2x 1 y 1 - x 2 y 2 + x 2 y 1 , где x = (x 1 , x 2), y = (y 1 , y 2)ÎR 2 , билинейная форма на R 2 .

Определение 2. Пусть v = (v 1 , v 2 ,…, v n V. Матрицей билинейной формы g (x , y ) относительно базиса v называется матрица B =(b ij ) n ´ n , элементы которой вычисляются по формуле b ij = g (v i , v j ):

Пример 3 . Матрица билинейной формы h (x , y ) (см. пример 2) относительно базиса e 1 = (1,0), e 2 = (0,1) равна .

Теорема 1 . Пусть X, Y- координатные столбцы соответственно векторов x , y в базисе v, B - матрица билинейной формы g (x , y ) относительно базиса v . Тогда билинейную форму можно записать в виде

g (x , y )=X t BY . (1)

Доказательство. По свойствам билинейной формы получаем

Пример 3 . Билинейной формы h (x , y ) (см. пример 2) можно записать в виде h (x , y )=.

Теорема 2 . Пусть v = (v 1 , v 2 ,…, v n ), u = (u 1 , u 2 ,…, u n ) - два базиса векторного пространства V, T- матрица перехода от базиса v к базису u. Пусть B = (b ij ) n ´ n и С =(с ij ) n ´ n - матрицы билинейной формы g (x , y ) соответственно относительно базисов v и u. Тогда

С = T t BT. (2)

Доказательство. По определению матрицы перехода и матрицы билинейной формы находим:



Определение 2. Билинейная форма g (x , y ) называется симметричной , если g (x , y ) = g (y , x ) для любых x , y ÎV.

Теорема 3 . Билинейная форма g (x , y )- симметричной тогда и только тогда, когда матрица билинейной формы относительно любого базиса симметричная.

Доказательство. Пусть v = (v 1 , v 2 ,…, v n ) - базис векторного пространства V, B = (b ij ) n ´ n - матрицы билинейной формы g (x , y ) относительно базиса v. Пусть билинейная форма g (x , y )- симметричная. Тогда по определению 2 для любых i, j = 1, 2,…, n имеем b ij = g (v i , v j ) = g (v j , v i ) = b ji . Тогда матрица B - симметричная.

Обратно, пусть матрица B - симметричная. Тогда B t = B и для любых векторов x = x 1 v 1 + …+ x n v n = vX, y = y 1 v 1 + y 2 v 2 +…+ y n v n = vY ÎV , согласно формуле (1), получаем (учитываем, что число - матрица порядка 1, и при транспонировании не меняется)

g (x , y ) = g (x , y ) t = (X t BY ) t = Y t B t X = g (y , x ).

2. Квадратичная форма. Матрица квадратичной формы. Преобразование координат.

Определение 1. Квадратичной формой определенной на V, называется отображение f : V ® P , которое для любого векторов x из V определяется равенством f (x ) = g (x , x ), где g (x , y ) - симметричная билинейная форма, определенная на V .

Свойство 1. По заданной квадратичной форме f (x ) билинейная форма находится однозначно по формуле

g (x , y ) = 1/2(f (x + y ) - f (x )- f (y )). (1)

Доказательство. Для любых векторов x , y ÎV получаем по свойствам билинейной формы

f (x + y ) = g (x + y , x + y ) = g (x , x + y ) + g (y , x + y ) = g (x , x ) + g (x , y ) + g (y , x ) + g (y , y ) = f (x ) + 2g (x , y ) + f (y ).

Отсюда следует формула (1). 

Определение 2. Матрицей квадратичной формы f (x ) относительно базиса v = (v 1 , v 2 ,…, v n ) называется матрица соответствующей симметричной билинейной формы g (x , y ) относительно базиса v .

Теорема 1 . Пусть X = (x 1 , x 2 ,…, x n ) t - координатный столбец вектора x в базисе v, B - матрица квадратичной формы f (x ) относительно базиса v . Тогда квадратичную форму f (x )

Приведение квадратичных форм

Рассмотрим наиболее простой и чаще используемый на практике способ приведения квадратичной формы к каноническому виду, называемый методом Лагранжа . Он основан на выделении полного квадрата в квадратичной форме.

Теорема 10.1 (теорема Лагранжа).Любую квадратичную форму (10.1):

при помощи неособенного линейного преобразования (10.4) можно привести к каноническому виду (10.6):

□ Доказательство теоремы проведем конструктивным способом, используя метод Лагранжа выделения полных квадратов. Задача заключается в том, чтобы найти неособенную матрицу такую, чтобы в результате линейного преобразования (10.4) получилась квадратичная форма (10.6) канонического вида. Эта матрица будет получаться постепенно как произведение конечного числа матриц специального типа.

Пункт 1(подготовительный).

1.1. Выделим среди переменных такую, которая входит в квадратичную форму в квадрате и в первой степени одновременно (назовем ее ведущей переменной ). Перейдем к пункту 2.

1.2. Если в квадратичной форме нет ведущих переменных (при всех : ), то выберем пару переменных, произведение которых входит в форму с отличным от нуля коэффициентом и перейдем к пункту 3.

1.3. Если в квадратичной форме отсутствуют произведения разноименных переменных, то данная квадратичная форма уже представлена в каноническом виде (10.6). Доказательство теоремы завершено.

Пункт 2 (выделение полного квадрата).

2.1. По ведущей переменной выделим полный квадрат. Без ограничения общности предположим, что ведущей переменной является переменная . Группируя слагаемые, содержащие , получаем

Выделяя полный квадрат по переменной в , получим

Таким образом, в результате выделения полного квадрата при переменной получим сумму квадрата линейной формы

в которую входит ведущая переменная , и квадратичной формы от переменных , в которую ведущая переменная уже не входит. Сделаем замену переменных (введем новые переменные )

получим матрицу

() неособенного линейного преобразования , в результате которого квадратичная форма (10.1) примет следующий вид

С квадратичной формой поступим также, как и в пункте 1.

2.1. Если ведущей переменной является переменная , то можно поступить двумя способами: либо выделять полный квадрат при этой переменной, либо выполнить переименование (перенумерацию ) переменных:

с неособенной матрицей преобразования:

Пункт 3 (создание ведущей переменной). Выбранную пару переменных заменим на сумму и разность двух новых переменных, а остальные старые переменные заменим на соответствующие новые переменные. Если, например, в пункте 1 было выделено слагаемое



то соответствующая замена переменных имеет вид

и в квадратичной форме (10.1) будет получена ведущая переменная.

Например, в случае замены переменных:

матрица этого неособенного линейного преобразования имеет вид

В результате приведенного алгоритма (последовательного применения пунктов 1, 2, 3) квадратичная форма (10.1) будет приведена к каноническому виду (10.6).

Заметим, что в результате производимых преобразований над квадратичной формой (выделение полного квадрата, переименование и создание ведущей переменной) мы использовали элементарные неособенные матрицы трех типов (они являются матрицами перехода от базиса к базису). Искомая матрица неособенного линейного преобразования (10.4), при котором форма (10.1) имеет канонический вид (10.6), получается путем произведения конечного числа элементарных неособенных матриц трех типов. ■

Пример 10.2. Привести квадратичную форму

к каноническому виду методом Лагранжа. Указать соответствующее неособенное линейное преобразование. Выполнить проверку.

Решение. Выберем ведущей переменную (коэффициент ). Группируя слагаемые, содержащие , и выделяя по ней полный квадрат, получим

где обозначено

Сделаем замену переменных (введем новые переменные )

Выразив старые переменные через новые :

получим матрицу

Вычислим матрицу неособенного линейного преобразования (10.4). Учитывая равенства

получим, что матрица имеет вид

Выполним проверку проведённых вычислений. Матрицы исходной квадратичной формы и канонической формы имеют вид

Убедимся в справедливости равенства (10.5).