Что такое взрыв? Понятие и классификация взрывов. Взрывчатые вещества и взрывоопасные объекты

атомного ядра. Ядерный взрыв основан на сnособности оnределен­

ных изотоnов тяжелых элементов урана или nлутония к делению, nри котором ядра исходного вещества расnадаются, образуя ядра более легких элементов. При делении всех ядер, содержащихся в 50 г урана или nлутония, освобождается такое же количество энергии, как и nри детонации 1 000 т тринитротолуола.

Термоядерные взры вы

Существует другой тиn ядерной реакции - реакция синтеза лег­ ких ядер, соnровождающаяся выделением большого количества энер­

гии. Силы отталкивания одноименных электрических зарядов (все ядра имеют nоложительный электрический заряд) nреnятствуют nро­ теканию реакции синтеза, nоэтому для эффективного ядерного nре­ вращения такого тиnа ядра должны обладать высокой энергией. Такие условия могут быть созданы нагреванием веществ до очень высокой темnературы. Процесс синтеза, nротекающий nри высокой темnера­ туре, называют термоядерной реакцией. При синтезе ядер дейтерия (изотоnа водорода 2Н) освобождается nочти в три раза больше энер­ гии, чем nри делении такой же массы урана. Необходимая для синтеза темnература достигается nри ядерном взрыве урана или nлутония.

Таким образом, если nоместить в одном и том же устройстве де­ лящееся вещество и изотоnы водорода, то может быть осуществлена реакция синтеза, результатом которой будет взрыв огромной силы -

термоядерный взрыв.

2. 1.4. Взрывы в средах

Взрывы nроисходят в различных средах. В зависимости от места nервоначального выделения энергии взрывы nодразделяются:

воздушный взрыв - это взрыв заряда в газе в отсутствии отражающих nоверхностей;

nодземный взрыв - взрыв заряда в грунте;

nодводный взрыв - взрыв заряда в воде;

наземный взрыв - взрыв заряда на nоверхности грунта (nо­

верхностный).

Действие взрыва зависит от характеристик среды и от условий его осуществления, таких как глубина (высота) nод или над границей

раздела фаз.

Раздел 2 . Взры в

Воздушные взрывы

При взрыве в воздухе продукты взрыва движутся вслед за ударной

волной, < nодпитывая > ее. Затем характер ударной волны определяет­

ся запасом энергии, переданной ей продуктами взрыва в процессе их

расширения.

Для расчета избыточного давления используются многочислен­

ные методы,

учитывающие состав горючего вещества (индивидуаль­

ное вещество или смесь горючих веществ), место взрыва (открытое

пространство или закрытое помещение) и т. д. В качестве иллюстра­

ции приведем метод определения избыточного давления для воздуш­

ных взрывов по формуле М.А. Садовского:

0,084 - r - + 0,27

т - масса тротилового эквивалента взрывного вещества, кг;

r - расстояние до центра взрыва, м.

Более подробно ознакомимся с методами расчета подобных взры­

в разделе 3.

Подземные взрывы

При подземном взрыве происходит передача энергии внешней

среде путем прогрева ее выделяющейся теплотой. По грунту распро­

страняются тепловая и ударная волны.

Особенностью подземного взрыва является большая плотность

грунта, которая на три порядка больше плотности воздуха.

Ударная волна в грунте, в отличие от ударной волны в воздухе,

является неустойчивой, так как встречающийся на пути ударной

волны грунт имеет различную структуру (почва, скальные породы

Подземные взрывы являются контролируемыми взрывами. В за-

висимости от глубины заложения заряда в грунт принято различать:

камуфлетный подземный взрыв;

подземный взрыв с выбросом грунта.

Особенности таких взрывов заключаются в следуюшем:

при камуфлетнам взрыве не происходит раскрытия грунтового

канала (выброса грунта в атмосферу);

при подземном взрыве с выбросом грунта происходит раскры­

тие грунтового купола и образование воронки выброса.

Подводные взрывы

При подводном взрыве в момент выхода детонационной волны на поверхность начинает распространяться ударная волна. Вслед за

ударной волной движется граница раздела между продуктами детона­

ции и водой. При этом в воде образуется полость с газообразными

продуктами детонации, обладающими колоссальной энергией.

где G R- масса заряда взрывчатого вещества (ВВ), кг; расстояние от заряда ВВ до точки наблюдения, м.

2.2. Случай ные взрывы

В зависимости от причин, вызывающих взрыв, принято разделе­ ни взрывов на контролируемые и неконтролируемые.

Контролируемые взрывы используются для решения экономиче­

ских задач. Наиболее часто применяют такие взрывы для ведения гор­ ных разработок, в сейсморазведке, при строительстве подземных со­

оружений, в военных целях. Параметры контролируемых взрывов стро­ го регламентированы в соответствии с нормативными документами.

Неконтролируе.мые взрывы происходят случайно, поэтому их на­

зывают случайными.

Термин «случайный взрыв» включает широкий спектр взрывов, и

каждый из них в отдельных своих проявлениях отличается от остальных.

Причинами таких взрывов чаше всего являются процессы горения. Случайные взрывы происходят:

при изготовлении, хранении, транспортировке горючих, взры­ воопасных вешеств;

нарушении технологических режимов, поломке оборудования.

Чаще всего взрывы имеют место в химической, нефтеперерабаты­ вающей промышленности, при утечке природного газа и т. д.

Классификация случайных взрывов

Случайные взрывы объединены в груnnы, каждая из которых имеет отличительные особенности.

Случайные взрывы nодразделяются:

на взрывы газов, nаров и n ыли в замкнутых объемах без избыточного давления;

взрывы сосудов с газом nод давлением;

взрывы, вызванные горением;

взрывы емкостей с nереrретой жидкостью;

взрывы неограниченных облаков пара;

физические (nаровые) взрывы и др.

2.2. 1. Взрывы паров горючего и пыли в замкнутых

Такие взрывы, как nравило, nроисходят nри неисnравности обо­ рудования. Горючее nодтекает в ограждение, nары его смешиваются с воздухом и образуется горючая смесь, которая встуnает в контакт с уже имеющимиен nарами.

Взрывы случаются в жилых домах nри утечке газа. В результате nроисходят расnространение и значительное ускорение nламени, nриводящие к nожарам и значительным разрушениям.

Примером взрыва горючих nаров и газов является катастрофа, nроизошедшая 26 февраля 2006 г в г. Ангарске на лакокрасочном nредnриятии.

Наиболее расnространены взрывы nыли. Взрывы nыли в замкну­ том nространстве имеют более длительную историю, чем взрывы nа­ ров и газов. Это объясняется тем, что nары и газы в качестве тоnлива

начали исnользоваться относительно недавно. Взрывы же пыли nро­ исходят в котельных, на nредnриятиях химической nромышленности,

в фармацевтической индустрии, угольных шахтах, мукомольных nредnриятиях.

Взрыв nыли в замкнутом объеме может nривести к катастрофиче­ ским nоследствиям.

Практически все органические nыли и некоторые неорганичек ­ ские или металлические nыли сгорают в воздухе и могут nривести взрывам.

высокая концентрация пыли в замкнутых объемах (помещени­ ях реакторов, топочных устройствах, трубопроводах и пр.);

спонтанное воспламенение пыли.

Для того чтобы облако пыли взорвалось, необходима такая кон­ центрация пыли, при которой характерное расстояние поглощения и

рассеяния света составляет примерно 0,2 м. Подобные облака, как

правило, непрозрачны, и концентрация пыли в них выше переноси­ мой человеком. Такие условия могут достигаться лишь внутри трубо­

проводов и специального оборудования, т. е. в закрытых объемах. Взрывы пыли склонны к спонтанному воспламенению. Воспла­

менение возникает от источника зажигания (искра, открытый огонь и т. д.) при нижнем или верхнем концентрационных пределах воспла­ менения.

Пример. Рассмотрим типичную последовательность событий при взрыве пыли. Вначале происходит небольшой взрыв в какой-либо части помещения или оборудования. Затем возникают движение пыли и вибрация оборудования от ударной волны, образующейся от взрыва. Это приводит к тому, что слой пыли, находящейся в помеще­ нии, поднимается в воздух. Эта пыль является топливом для более сильного второго взрыва, который и вызывает основные разрушения.

В другой типичной ситуации масса пыли начинает тлеть либо из-за спонтанного воспламенения, например, когда слой пыли по­ крывает горячий участок оборудования (кожух электромотора, обой­ му электролампы). Рабочий, обнаружив очаг горения, пытается лик­ видировать его либо с помощью химического огнетушителя, либо струей воды. Это приводит к тому, что пыль разбрасывается и образу­ ется облако с большим количеством пыли, часть которой горит. Уси­ ление горения приводит к взрыву.

Для взрывов пыли в помещении, также как и для взрывов газов и паров, характерно существование двух предельных случаев. В замкну­

том объеме с малым отношением длины сосуда к диаметру (Ljd = \) следует ожидать простого взрыва за счет избыточного давления. В конструкциях с большим отношением Ljd может возникать ускоре­ ние пламени вплоть до детонационной скорости. В этом случае раз­ рушения носят локальный характер и оказываются достаточно серь­ езными. Осколки могут разбрасываться на значительное расстояние, а внешняя взрывная волна может быть очень сильной.

  • 1.3. Права и обязанности граждан рф и руководителей организаций в области пожарной безопасности
  • Глава 2.Виды горения и пожаров
  • 2.1.Основы теории горения. Виды горения, их характеристика
  • 2.2. Виды пожаров. Параметры, характеризующие пожар. Поражающие факторы пожара
  • 2.3. Классификация пожаров и рекомендуемые средства пожаротушения
  • Глава 3. Пожарно_техническая классификация строительных материалов, конструкций, помещений и зданий
  • 3.1. Пожарно-техническая классификация строительных материалов
  • 3.2. Пожарно-техническая классификация строительных конструкций по пожарной безопасности, а зданий по огнестойкости
  • 3.3. Категории помещений по взрывопожарной и пожарной опасности
  • Глава 4. Способы и средства профилактики пожаров
  • 4.2. Требования к способам обеспечения пожарной безопасности системы противопожарной защиты
  • 4.3. Противовзрывные и противопожарные требования к планировке производственных зданий и помещений
  • 4.4. Назначение и устройство противопожарных разрывов, стен, дверей, ворот, зон, перекрытий, лск, отсекателей, огнепреградителей и противодымной защиты зданий
  • 4.5. Пожарная безопасность технологических процессов
  • 4.6. Организационно - технические мероприятия по предотвращению распространения пожаров и взрывов
  • 4.7. Пожарная сигнализация (привести схемы). Тепловые, дымовые и световые извещатели
  • 4.8. Знаки пожарной безопасности. Противопожарные инструктажи
  • Глава 5. Способы и средства тушения пожаров
  • 5.1. Способы тушения пожаров. Классификация, характеристика и выбор огнетушащих веществ
  • 5.2. Виды огнетушителей
  • 5.3. Классификация огнетушителей
  • 5.4. Выбор огнетушителей. Эффективность их применения в зависимости от класса пожара и заряженного отв
  • 5.5. Устройство, порядок работы, характеристики и область применения углекислотных огнетушителей оу.
  • 5.6.Устройство, порядок работы, характеристики и область применения воздушно-пенных огнетушителей овп
  • 5.7. Устройство, порядок работы, характеристики и область применения порошковых огнетушителей оп.
  • 5.8. Нормы оснащения помещений переносными огнетушителями
  • 5.9.Устройство и принцип работы спринклерной и дренчерной систем автоматического пожаротушения
  • Глава 6. Пожарная профилактика на территории и в помещениях образовательных учреждений
  • 6.1.Эвакуация людей при пожаре
  • 6.2.Основные меры пожарной профилактики на территории, в производственных и учебных помещениях
  • Глава 7. Система обеспечения пожарной безопасности
  • 7.1.Понятие, основные элементы и функции системы обеспечения пожарной безопасности в рф
  • 7.2.Виды и основные задачи пожарной охраны в рф. Права государственного инспектора по пожарному надзору
  • 7.3. Организация тушения пожаров и проведения аварийно- спасательных работ
  • 7.4. Организация пожарной охраны на предприятии. Обязанности и задачи пожарно-технической комиссии
  • Глава 8. Классификация и характеристика взрывов
  • 8.1. Характеристика взрывоопасного состояния объектов экономики рф
  • 8.2. Классификация взрывов
  • 8.3. Характеристика и классификация конденсированных взрывчатых веществ
  • 8.4. Пылевоздушные смеси и особенности их горения
  • 8.5. Особенности физического взрыва. Причины взрывов сосудов, работающих под давлением
  • Глава 9.Взрывозащита систем повышенного давления
  • 9.1. Мероприятия по профилактике взрывов систем повышенного давления
  • 9.2. Классификация взрывоопасных зон и помещений
  • 9.3. Классификация тяжести поражения людей и разрушения зданий в зависимости от давления в ударной волне
  • 9.4. Государственный надзор за взрывными объектами: допуск к работе, испытание сосудов. Права Ростехнадзора
  • 9.5. Первая помощь при пожарах и ожогах
  • Примерный перечень вопросов к экзамену
  • Библиографический список
  • 8.2. Классификация взрывов

    На взрывоопасных объектах возможны следующие виды взрывов :

    1. Взрывы конденсированных взрывчатых веществ (КВВ). При этом происходит неконтролируемое резкое высвобождение энергии за короткий промежуток времени в ограниченном пространстве. К таким ВВ относятся тротил, динамит, пластид, нитроглицерин и др.

    2. Взрывы топливовоздушных смесей или других газообразных, пылевоздушных веществ (ПЛВС). Эти взрывы еще называют объемными взрывами.

    3. Взрывы сосудов, работающих под избыточным давлением (баллоны со сжатыми и сжиженными газами, котельные установки, газопроводы и т.д.). Это так называемые физические взрывы.

    Основными поражающими факторами взрыва являются: воздушная ударная волна, осколки.

    Первичные последствия взрыва: разрушение зданий, сооружений, оборудования, коммуникаций (трубопроводов, кабелей, железных дорог), травмирование и гибель людей.

    Вторичные последствия взрыва: обрушение конструкций зданий и сооружений, травмирование и погребение под их обломками людей, находящихся в здании, отравление людей ядовитыми веществами, находившимися в разрушенных емкостях, оборудовании, трубопроводах.

    При взрывах люди получат термические, механические, химические или радиационные поражения.

    Для предотвращения взрывов на предприятиях принимается комплекс мер, зависящих от характера производства. Многие меры являются специфическим, характерными только для одного или нескольких видов производства. Однако существуют меры, соблюдать которые необходимо на любых производствах. К ним относятся:

    1) размещение взрывоопасных производств, хранилищ, складов ВВ в незаселенных или малозаселенных районах;

    2) если первое условие выполнить невозможно, то такие объекты допускается строить на безопасных расстояниях от населенных пунктов;

    3) для надежного обеспечения взрывоопасных производств электроэнергией (при этом нарушается технологический режим) необходимо иметь автономные источники электроснабжения (генераторы, аккумуляторы);

    4) на протяженных нефте- и газопроводах через каждые 100 км рекомендуется иметь аварийные бригады.

    8.3. Характеристика и классификация конденсированных взрывчатых веществ

    Под КВВ понимаются химические соединения , находящиеся в твердом или жидком состоянии , которые под влиянием внешних условий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые расширяясь производят механическую работу. Такое химпревращение ВВ называют взрывчатых превращением.

    Взрывчатое превращение в зависимости от свойств взрывчатого вещества и вида воздействия на него может протекать в виде взрыва или горения. Взрыв распространяется по взрывчатому веществу с большой переменной скоростью, измеряемой сотнями или тысячами метров в секунду. Процесс взрывчатого превращения, обусловленный прохождением ударной волны по взрывчатому веществу и протекающий с постоянной (для данного вещества при данном его состоянии) сверхзвуковой скоростью, называется детонацией . В случае снижения качества ВВ (увлажнение, слёживание) или недостаточного начального импульса детонация может перейти в горение или совсем затухнуть.

    Процесс горения КВВ протекает сравнительно медленно со скоростью несколько метров в секунду. Скорость горения зависит от давления в окружающем пространстве: с увеличением давления скорость горения возрастает и иногда горение может перейти во взрыв.

    Возбуждение взрывчатого превращения ВВ называется инициированием . Оно происходит если сообщить ВВ необходимое количество энергии(начальный импульс). Он может быть передан одним из следующих способов:

    Механическим (удар, накол, трение);

    Тепловым (искра, пламя, нагревание);

    Электрическим (нагревание, искровой разряд);

    Химическим (реакции с интенсивным выделением тепла);

    Взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

    Все КВВ, применяемые в производстве, классифицируются на три группы:

    - инициирующие (первичные), они обладают очень высокой чувствительностью к удару и тепловому воздействию и в основном используются в капсюлях- детонаторах для подрыва основного заряда ВВ (гремучая ртуть, нитроглицерин);

    - вторичные ВВ. Взрыв их происходит при воздействии на них сильной ударной волны, которая может создаваться в процессе их горения или с помощью внешнего детонатора. ВВ этой группы относительно безопасны в обращении и могут долго храниться (тротил, динамит, гексоген, пластид);

    - пороха . Чувствительность к удару очень мала, медленно горят. Загораются от пламени, искры или нагрева, быстрее горят на открытом воздухе. В закрытом сосуде взрываются. В состав пороха входят: древесный уголь, сера, азотнокислый калий.

    В народном хозяйстве КВВ применяются при прокладке дорог, тоннелей в горах, разрушении заторов льда в период ледохода на реках, в карьерах при добыче полезных ископаемых, при сносе старых зданий и т.д.

    "

    Взрыв - распространённое физическое явление, которое сыграло немалую роль в судьбе человечества. Он может разрушать и убивать, а также нести пользу, защищая человека от таких угроз, как наводнение и астероидная атака. Взрывы различаются по своей природе, но по характеру процесса они всегда разрушительны. Эта сила и является их главной отличительной особенностью.

    Слово "взрыв" знакомо каждому. Однако на вопрос о том, что такое взрыв, можно ответить только исходя из того, применительно к чему это слово употребляется. Физически взрыв - это процесс экстремально быстрого выделения энергии и газов в сравнительно небольшом объёме пространства.

    Стремительное расширение (тепловое или механическое) газа или иной субстанции, например, когда происходит взрыв гранаты, создаёт ударную волну (зону высокого давления), которая может обладать разрушительной силой.

    В биологии под взрывом подразумевают быстрый и масштабный биологический процесс (например, взрыв численности, взрыв видообразования). Таким образом, ответ на вопрос о том, что такое взрыв, зависит от предмета исследования. Однако, как правило, под ним подразумевают именно классический взрыв, о котором и пойдёт речь далее.

    Классификация взрывов

    Взрывы могут иметь различную природу, мощность. Происходят в различных средах (включая вакуум). По природе возникновения взрывы можно разделить на:

    • физические (взрыв лопнувшего шарика и т. д.);
    • химические (например, взрыв тротила);
    • ядерные и термоядерные взрывы.

    Химические взрывы могут протекать в твёрдых, жидких или газообразных веществах, а также воздушных взвесях. Главными при таких взрывах являются окислительно-восстановительные реакции экзотермического типа, либо экзотермические реакции разложения. Примером химического взрыва является взрыв гранаты.

    Физические взрывы возникают при нарушении герметичности ёмкостей со сжиженным газом и другими веществами, находящимися под давлением. Также их причиной может стать тепловое расширение жидкостей или газов в составе твёрдого тела с последующим нарушением целостности кристаллической структуры, что приводит к резкому разрушению объекта и возникновению эффекта взрыва.

    Мощность взрыва

    Мощность взрывов может быть различной: от обычного громкого хлопка из-за лопнувшего воздушного шарика или взорванной петарды до гигантских космических взрывов сверхновых звёзд.

    Интенсивность взрыва зависит от количества выделенной энергии и скорости её выделения. При оценке энергии химического взрыва используют такой показатель, как количество выделенной теплоты. Объём энергии при физическом взрыве определяется количеством кинетической энергии адиабатического расширения паров и газов.

    Техногенные взрывы

    На промышленном предприятии взрывоопасные объекты не редкость, а потому там могут возникнуть такие виды взрывов, как воздушный, наземный и внутренний (внутри технического сооружения). При добыче каменного угля нередкими являются взрывы метана, что особенно характерно для глубоких угольных шахт, где по этой причине имеется дефицит вентиляции. Причём различные угольные пласты имеют разное содержание метана, поэтому и уровень взрывной опасности на шахтах различен. Взрывы метана являются большой проблемой для глубоких шахт Донбасса, что требует усиления контроля и мониторинга его содержания в воздухе рудников.

    Взрывоопасные объекты - это ёмкости со сжиженным газом или находящимся под давлением паром. Также военные склады, контейнеры с аммиачной селитрой и многие другие объекты.

    Последствия взрыва на производстве могут быть непредсказуемые, в том числе трагические, среди которых лидирующее место занимает возможный выброс химикатов.

    Применение взрывов

    Эффект взрыва издавна используется человечеством в различных целях, которые можно разделить на мирные и военные. В первом случае речь идёт о создании направленных взрывов для разрушения подлежащих сносу строений, ледяных заторов на реках, при добыче полезных ископаемых, в строительстве. Благодаря им существенно снижаются трудозатраты, необходимые для осуществления поставленных задач.

    Взрывчатое вещество - это химическая смесь, которая под действием определённых, легко достигаемых условий, вступает в бурную химическую реакцию, приводящую к быстрому выделению энергии и большого количества газа. По своей природе взрыв такого вещества подобен горению, только протекает оно с огромной скоростью.

    Внешние воздействия, которые могут спровоцировать взрыв, бывают следующими:

    • механические воздействия (например, удар);
    • химический компонент, связанный с добавлением во взрывчатое вещество других составляющих, которые провоцируют начало взрывной реакции;
    • температурное воздействие (нагрев взрывчатого вещества или попадание на него искры);
    • детонация от близлежащего взрыва.

    Степень реакции на внешние воздействия

    Степень реакции взрывчатого вещества на любое из воздействий исключительно индивидуальна. Так, некоторые виды пороха легко воспламеняются при нагреве, но остаются инертными под действием химических и механических влияний. Тротил взрывается от детонации других взрывчатых веществ, а к остальным факторам он мало чувствителен. Гремучая ртуть подрывается при всех видах воздействий, а некоторые взрывчатые вещества могут даже взрываться самопроизвольно, что делает такие составы очень опасными и малопригодными для использования.

    Как детонирует взрывчатое вещество

    Различные взрывчатые вещества взрываются несколько по-разному. Например, для пороха характерна реакция быстрого воспламенения с выделением энергии в течение относительно большого промежутка времени. Поэтому он используется в военном деле для придания скорости патронам и снарядам без разрыва их оболочек.

    При другом типе взрыва (детонационный) взрывная реакция распространяется по веществу со сверхзвуковой скоростью и она же является причиной. Это приводит к тому, что энергия выделяется в очень короткий промежуток времени и с огромной скоростью, поэтому металлические капсулы разрывает изнутри. Такой тип взрыва типичен для таких опасных взрывчатых веществ, как гексоген, тротил, аммонит и т. д.

    Типы взрывчатых веществ

    Особенности чувствительности к внешним воздействиям и показатели взрывной мощности позволяют разделить взрывчатые вещества на 3 основные группы: метательные, инициирующие и бризантные. К метательным относят различные виды пороха. В эту группу входят маломощные взрывные смеси для петард и фейерверков. В военном деле их используют для изготовления осветительных и сигнальных ракет, в качестве источника энергии для патронов и снарядов.

    Особенностью инициирующих взрывчатых веществ является чувствительность к внешним факторам. При этом у них невысокая взрывная мощность и тепловыделение. Поэтому их используют в качестве детонатора для бризантных и метательных взрывчаток. Для исключения самоподрыва их тщательно упаковывают.

    Бризантные взрывчатые вещества обладают наибольшей взрывной мощностью. Они используются в качестве начинки для бомб, снарядов, мин, ракет и т. д. Наиболее опасными из них является гексоген, тетрил, тэн. Менее мощным взрывчатым веществом является тротил и пластид. Среди наименее мощных - аммиачная селитра. Бризантные вещества с высокой взрывной мощностью обладают и большей чувствительность к внешним воздействиям, что делает их ещё более опасными. Поэтому их используют в комбинации с менее мощными либо другими компонентами, которые приводят к снижению чувствительности.

    Параметры взрывчатых веществ

    В соответствии с объемами и скоростью энерго- и газовыделения все взрывчатые вещества оценивают по таким параметрам, как бризантность и фугасность. Бризатность характеризует скорость энерговыделения, которая напрямую влияет на разрушающие способности взрывчатого вещества.

    Фугасность определяет величину выделения газов и энергии, а значит и количество произведённой при взрыве работы.

    По обоим параметрам лидирует гексоген, который является наиболее опасным взрывчатым веществом.

    Итак, мы попытались дать ответ на вопрос о том, что такое взрыв. А также рассмотрели основные типы взрывов и способы классификации взрывчатых веществ. Надеемся, что прочитав эту статью, вы получили общее представление о том, что такое взрыв.

    Взрывы, наиболее часто встречающиеся на практике, можно разделить на две основные группы: физические и химические (см. рис. 7.2).

    К физическим взрывам относят процессы, приводящие к взрыву и не сопровождающиеся химическим превращением вещества.

    К химическим взрывам относят процессы, химического превращения вещества, проявляющиеся горением и характеризующиеся выделением тепловой энергии за короткий промежуток времени и в таком объеме, что образуются волны давления, распространяющиеся от источника взрыва.

    Причиной случайных взрывов чаще всего являются процессы го­рения. Взрывы такого рода чаще всего происходят при хранении, транспортировке и изготовлении ВВ. Они имеют место при обращении с ВВ и взрывоопасными веществами в химической и нефтехимической промышленности; при утечках природного газа в жилых домах; при изготовлении, транспортировке и хранении легколетучих или сжиженных горючих веществ; при промывке резервуаров для хранения жидкого топлива; при изготовлении, хранении и использовании горючих пылевых систем и некоторых самовозгорающихся твердых и жидких веществ.

    Рис. 7.2. Классификация взрывов, наиболее часто встречающихся на практике

    При физическом взрыве высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (более строго, сжиженного пара). Сила таких взрывов зависитот внутреннего давления, а разрушения могут быть вызваны ударной волной от расширяющегося газа или осколками разорвавшегося резервуара. В ряде аварий отмечались физические взрывы, возникающие от полного разрушения автоцистерн. В зависимости от обстоятельств части такого резервуара разлетались на сотни метров.

    То же может случиться (в меньших масштабах) с переносными баллонами для газа, если такой баллон упадет и сорвется вентиль, понижающий давление. Известны многочисленные случаи таких чисто физических взрывов сосудов со сжиженными газами под давлением, не превышающим 4 МПа.

    К физическим взрывам следует отнести и явление так называемой физической (или термической) детонации, которая возникает при смешении горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при выливании расплавленного железа в воду). В образовавшейся парожидкостной смеси испарение может протекать взрывным образом вследствие развивающихся процессов тонкой фрагментации капель расплава, быстрого отвода от них и перегрева холодной жидкости. Физическая детонация сопровождается образованием ударной волны с избыточным давлением в жидкой фазе, достигающим в некоторых случаях сотен мегапаскалей. Указанное явление может стать причиной крупных аварий в ядерных реакторах и на промышленных предприятиях металлургической, химической и бумажной промышленности.


    Источники энергии сжатых газов (паров) в замкнутых объемах аппаратуры могут быть как внешними, так и внут­ренними. Внешние – это электрическая энергия, используе­мая для сжатия газов и нагнетания жидкостей; теплоносите­ли, в том числе электрические, обеспечивающие нагрев жидкостей и газов в замкнутых объемах аппаратуры. К внутренним источникам относится энергия экзотермиче­ских физико-химических и тепломассообменных процессов в замкнутом объеме аппаратуры, приводящая к интенсив­ному испарению жидких сред или газообразованию, росту температуры и давления без внутренних взрывных явлений.

    Химические взрывы делят на объемные (см. рис. 7.3) и взрывы конденсированных ВВ. Источником химического взрываявляются быстро протекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или тер­мического разложения нестабильных соединений. При не­которых обстоятельствах возможны неконтролируемые ре­акции, сопровождающиеся возрастанием давления в реак­ционном сосуде, который может полностью разрушиться, ес­ли нет предохранительного клапана. При этом могут обра­зоваться ударная волна и осколочное поле.

    Рис. 7.3. Классификация объемных взрывов

    Энергоносители химических взрывов могут быть твердыми, жидкими, газообразными веществами, а также аэровзвесями горючих веществ (жидких и твердых) в окис­лительной среде (часто в воздухе). Взрывы газовых смесей и аэровзвесей горючих веществ иногда называют объемны­ми взрывами. Твердые и жидкие энергоносители относятся в большинстве случаев к классу конденсированных ВВ. В состав этих веществ или их смесей вхо­дят восстановители и окислители или другие химически нест абильные соединения. При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии(при взрывах конденсированного ВВ атомы углерода и водорода в молекулах вещества замеща­ется атомами азота).

    Газообразные энергоносители представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями, такими как воздух, кислород, хлор и др., либо нестабильные газообразные соединения, такие как ацетилен, этилен (склонные к термическому разложению в отсутствии окислителей). Источником взрывов газовых смесей являются экзотермические реакции окисления горючего вещества или реакции разложения нестабильных соединений.

    Двухфазные взрывоопасные аэровзвеси состоят измелкодисперсных горючих жидкостей («туманов») или твердых веществ (пыли) в окислительной среде, в основном, в воздухе. Источником энергии их взрывов также является тепло сгорания этих веществ.

    Технологическая система взрывоопасна, если она обладает запасом потенциальной энергии, высвобождающейся с настолько большой скоростью, что она может генерировать воздушную ударную волну (ВУВ), способную вызвать крушения или поражения людей. Количество потенциальной энергии определяется соответствующими физико-химическими закономерностями энерговысвобождения.

    Энергию взрыва парогазовых сред определяют по теплоте сгорания горючих веществ в смеси с воздухом (окислителем); конденсированных ВВ – по теплоте, выделяющейся при их детонации (реакции разложения); при физиче­ских взрывах систем со сжатыми газами и перегретыми жидкостями – по энергии адиабатического расширения па­рогазовых сред и перегрева жидкости.

    Скорость высвобождения энергии в общем случае вы­ражается удельной мощностью , т. е. количеством энергии, выделяемой в единицу времени на единицу объема. При химических взрывах скорость энерговыделения можно оп­ределить по скоростям распространения детонации или пламени в газовой среде. Скорость распространения дето­нации в твердом или жидком ВВ приблизительно соответ­ствует скорости звука в веществе и находится в интервале 2 . 10 3 -9 . 10 3 м/с; при газовых физических и химических взрывах волны сжатия двигаются со скоростью, близкой к скорости звука в воздухе.

    Химические взрывы, вызываемые экзотермическими реакциями разложения в конденсированных ВВ или неус­тойчивых соединениях в газовой фазе, сопровождаются об­разованием (увеличением) числа моль газов. Например, при взрыве 1 кг тринитротолуола (ТНТ), являющегося вещест­вом с отрицательным кислородным балансом, образуется приблизительно 20 моль газов (паров) (0,6 – СО; 10,0 – СО 2 ; 0,8 – Н 2 О; 6,0 – N 2 ; 0,4 – NH 3 ; 4,7 –СН 3 ОН; 1,0 – HCN) и 15 моль угле­рода. Большинство других бризантных ВВ (за исключением нитроглицерина) также являются веществами с отрицатель­ным кислородным балансом, т. е. числа атомов кислорода в их молекулах недостаточно для полного превращения имеющихся атомов углерода в СО 2 и водорода в Н 2 О.Спо­собность вещества к взрывному процессу подчиняется за­конам термохимии, согласно которым, если в данной реакции сумма теплот образования продуктов меньше теплоты образования исходного соединения, то это вещество потен­циально взрывоопасно. Например, если вещество А, разла­гающееся по реакции А → B + C + D, взрывоопасно, то долж­но соблюдаться условие:

    q(A) ≥ q(B) + q(C) + q(D),

    где q – эн­тальпия (теплота) образования; qимеет положительные зна­чения для соединений, образующихся с поглощением тепла (эндотермические процессы) и отрицательное для соедине­ний образующихся с выделением тепла (экзотермические процессы).

    Таким образом можно оценить лишь способность вещества к взрывному процессу, а энергию и мощность взрыва определяют по скорости реакции.

    Источниками энергии взрывов могут быть окислительно-восстановительные химические реакции, в которых
    воздух или кислород взаимодействуют с восстановителем.
    Наряду с горючими газами восстановителями могут быть
    мелкодисперсные горючие твердые вещества (пыли) или
    диспергированные жидкости. Окислительно-восстановительные реакции в этих условиях могут проте­кать как в замкнутых, так и незамкнутых объемах с доста­точно высокими скоростями, при которых генерируются ударные волны, способные вызвать ощутимые разрушения.

    Воздушная ударная волна взрыва вызывает разрушения или повреждения железнодорожного пути, подвижного состава, зданий, элементов связи, СЦБ, железнодорожного водоснабжения и других элементов инженерно-технического комплекса (ИТК)* железнодорожного транспорта.

    Качественное состояние разрушенных элементов ИТК в зонах чрезвычайных ситуаций оценивается соответствующей степенью разрушения: полной, сильной, средней и слабой.

    Полные разрушения характеризуются разрушением или обрушением всех или большей части несущих конструкций, капитальных стен, сильной деформацией или обрушением межэтажных и потолочных перекрытий, пролетных строений мостов. При этом обломки зданий и сооружений создают сплошные завалы. Основные элементы железнодорожного пути полностью выходят из строя. Подвижной состав, путевые машины, станционное оборудование и аппаратура не подлежат восстановлению.

    Использование элементов машин, подвижного состава и разрушенных частей сооружений невозможно.

    Сильные разрушения характеризуются разрушением части капитальных и большинства остальных стен зданий, деформацией пролетных строений мостов, большинства опор контактной сети и ЛЭП. Восстановление железнодорожного пути и сооружений возможно, но нецелесообразно, так как практически сводится к новому строительству с использованием некоторых сохранившихся элементов и конструкций. Технические и транспортные средства ремонту не подлежат, отдельные их детали в дальнейшем могут быть использованы при ремонте.

    Средние разрушения характеризуются разрушением второстепенных элементов (внутренних перегородок, окон, крыш), появлением трещин в стенах, обрушением чердачных перекрытий и отдельных участков верхних этажей. Вокруг зданий завалов не образуется, но отдельные обломки конструкций могут быть отброшены на значительные расстояния. Железнодорожный путь получает деформацию. Деформируются отдельные элементы пролетных строений мостов, отдельные опоры ЛЭП, контактной сети и линии связи. Возможно восстановление зданий, железнодорожного пути, сооружений, подвижного состава, транспортных и других технических средств с использованием капитального и среднего ремонта.

    Слабые разрушения зданий характеризуются разрушением наименее прочных конструкций: оконных и дверных заполнений, легких перегородок, кровли. Оборудование получает незначительные деформации второстепенных элементов. Восстановление железнодорожного пути, сооружений, подвижного состава и техники требует текущего ремонта.

    В связи с тем, что при полном и сильном разрушениях здания, сооружения и технические средства не восстанавливаются, в справочных данных и расчетах часто используют только три степени разрушений -сильную, среднюю и слабую.

    При воздействии одних и тех же параметров ударной волны взрыва на различные элементы ИТК степень их разрушения будет неодинакова в связи с различной их физической устойчивостью.

    Под физической устойчивостью следует понимать способность сооружения противостоять воздействию внешних нагрузок в чрезвычайной ситуации. Эта способность является свойством сооружения, которое зависит от его размеров, конструктивных и других параметров и не зависит от каких-либо внешних факторов. К таким параметрам, например, относятся: жесткость конструкции, наличие фундамента, закрепление элементов и другие прочностные свойства; материал; масса и положение центра тяжести; размеры элементов и их конфигурация; площадь опоры; расстояние между опорными частями и др.

    Например, при одних и тех же внешних нагрузках наибольшим разрушениям подвергаются многоэтажные жилые здания без каркаса с несущими стенами из кирпича, панелей и блоков. Наибольшие нагрузки выдерживают массивные промышленные здания с металлическим каркасом и внутренним крановым оборудованием большой грузоподъемности, для которых устраиваются несущие колонны, что делает конструкцию здания более жесткой и прочной.

    Высокие внешние нагрузки выдерживает верхнее строение железнодорожного пути, имеющее жесткую конструкцию (соединение балластного слоя, шпал и рельсов), незначительное возвышение над поверхностью земли и малый коэффициент аэродинамического сопротивления.

    Среди различных видов железнодорожного подвижного состава наибольшей устойчивостью к воздействию внешних нагрузок при взрывах обладают четырехосные незагруженные платформы (малые размеры при значительной массе), груженые цистерны (малый коэффициент аэродинамического сопротивления) и локомотивы. Наименее устойчивыми являются пассажирские вагоны и крытые порожние грузовые вагоны (значительные размеры и относительно малая масса).

    Сравнительная оценка устойчивости (по степеням разрушения) элементов ИТК при взрывах производится с помощью единого количественного показателя - величины избыточного давления во фронте ударной волны


    Если определяющим фактором при разрушении сооружения является не избыточное давление во фронте воздушной ударной волны ΔР ф, а давление скоростного напора воздуха ΔР ск (при отсутствии опытных данных о степени разрушений сооружений при соответствующих значениях ΔР ф ), то устойчивость сооружения рассчитывается на действие давления скоростного напора ΔР ск . Расчетные значения ΔР ск пересчитываются по формуле (3.1) или графику (рис. 3.3) в ΔР ф , что позволяет сравнивать устойчивость сооружений и определять степень их разрушений с использованием единого показателя ΔР ф , (Расчеты устойчивости сооружений представлены в главе 8.)

    Характер зависимости степени разрушения сооружения от величины избыточного давления во фронте ударной волны ΔР ф может быть пред-ставлен в виде графика (рис. 3.7).

    Для оценки сопротивляемости сооружений и устройств действию ударной волны необходимо знать их предел устойчивости - предельное значение избыточного давления во фронте воздушной ударной волны, при превышении которого функционирование сооружений и устройств невозможно.

    Рис. 3.7. Характер зависимости степени разрушения от величины избыточного давления во фронте ударной волны:

    I - зона слабых разрушений; II - зона средних разрушений; III - зона сильных разрушений; IV - зона полных разрушений; - предел устойчивости сооружения;

    Радиус функционирования - удаление от центра взрыва, на котором численно равно пределу устойчивости


    За предел устойчивости элемента ИТК принимается нижняя граница средних разрушений (на определенном расстоянии от центра взрыва ) (рис. 3.7).

    Смысл указанного положения состоит в том, что, попадая в зону I - слабых разрушений (рис. 3.7), сооружению требуется текущий ремонт, но его временное использование возможно с определенными ограничениями.

    При превышении предела устойчивости сооружения (попадании его в зону II) дальнейшее использование сооружения становится невозможным без проведения среднего ремонта.

    Таким образом, предел устойчивости и степень разрушения элементов ИТК количественно характеризуются граничными значениями ΔР ф, Для основных сооружений и устройств железнодорожного транспорта эти значения приведены в табл. 3.3.

    Указанные в табл. 3.3 интервалы с минимальными и максимальными значениями избыточного давления, характеризующие определенную степень разрушения, учитывают возможные различия в конструкции сооружений и положении сооружений по отношению к направлению распространения фронта ударной волны.

    Для железнодорожного пути и подвижного состава данные табл. 3.3 приведены для случая, когда фронт ударной волны распространяется перпендикулярно к оси пути и боковой стороне подвижного состава (наихудший вариант). При распространении ударной волны вдоль оси железнодорожного пути подвижной состав выдерживает избыточное давление (давление скоростного напора) в 1,5-2 раза больше табличных значений, а железнодорожный путь получает сильные и полные разрушения в основном в пределах радиуса воронки.

    В табл. 3.3 значения величины давления во фронте ударной волны, вызывающие определенную степень разрушения, приведены для ядерного взрыва. Считается, что одинаковая степень разрушения ударной волной от ядерного взрыва и взрыва ВМ, ГВС или УВГ имеет место, если давление во фронте ударной волны взрыва этих взрывоопасных веществ примерно в 1,5 раза выше давления во фронте ударной волны ядерного взрыва. (Для ВМ, ГВС и УВГ табличные данные увеличиваются в 1,5 раза).

    В отличие от городов и объектов экономики, содержащих, как правило, однотипные элементы - здания, на объектах железнодорожного (транспорта размещаются многообразные виды сооружений и устройств,

    обеспечивающие движение поездов и имеющие неодинаковую устойчивость. По этой причине на объектах железнодорожного транспорта в зоне аварийных взрывов невозможно выделить общие зоны полных, сильных, средних и слабых разрушений. Для каждого вида сооружений эти зоны будут иметь свои размеры.