Примеры свойства воды растворителя. Вода

Ученик 2 класса

Опытным путем удалось выяснить, что вода является растворителем многих веществ, поэтому она необходима для жизни живым существам.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Клюевская средняя общеобразовательная школа»

«Вода - как растворитель,

значение растворения воды»

Выполнил: ученик 2 класса

Руководитель: учитель начальных классов

Падерина Ольга Николаевна

с. Клюевка

2018

Введение

«… У тебя нет ни вкуса, ни цвета, ни запаха, тебя невозможно описать, тобой наслаждаются, не ведая, что ты такое? Нельзя сказать, что ты необходима для жизни: ты сама жизнь. Ты наполняешь нас радостью… Ты самое большое богатство на свете…»

Антуан де Сент Экзюпери

Проект: «Вода - как растворитель, значение растворения воды»

Цель проекта: Узнать, является ли вода растворителем

Задачи проекта:

1) провести эксперимент и сделать вывод о воде, как растворителе веществ;

2) научиться самостоятельно работать с различными источниками информации;

3) воспитывать любовь к природе, бережное отношение к ней.

Объект исследования: вода.

Предмет исследования: свойство воды - растворимость.

Гипотезы:

Предположим … (соль растворится в воде)
Допустим … (сахар растворится в воде)
Возможно … (песок не растворится в воде)
Что, если … (мел не растворится в воде)

Основная часть

Что мы знаем о воде?

Взгляните на карту мира.

Больше всего на ней голубой краски. А голубым цветом на картах изображают воду, без которой не обойтись никому и никогда, и заменить её нечем.

Вода занимает 3/4 поверхности земного шара. Вода повсюду. Толстый слой воздуха покрывает сплошной оболочкой весь земной шар. И в воздухе находится много воды, пара, облаков, туч.

Вода входит в состав любого живого организма. Достаточно помять лист растения в руках, и мы обнаружим в нем влагу. Вода содержится во всех частях растений. В теле животных вода составляет больше половины массы.

Вода одно из самых важных для человека веществ. Потеря воды для организма опаснее, чем голодание. Без пищи человек может прожить больше месяца, а без воды менее 10 дней.

Воду пьют поля и леса. Без нее не могут жить птицы и звери. Вода работает на электростанциях. Но вода не только поит людей, но и кормит – по морям и океанам и днем, и ночью плывут суда, везут грузы. Еще вода – это дорога для перевозки пассажиров. Без воды не приготовить хлеб, бумагу, резину, ткань, конфеты, лекарства – ничего не сделать без воды.

А что знают о свойствах воды учащиеся 2 класса?

Учащимся было предложено ответить на несколько вопросов о свойствах воды. Было опрошено 22 человека

Результаты опроса представлены в таблице.

Вопрос

Ответ

Количество человек

Какая вода по цвету?

  • Бесцветная
  • Голубая
  • Не знаю

20 чел

2 чел

Можно ли изменить цвет воды?

  • Не знаю

19 чел

2 чел

1 чел

Может ли вода растворять вещества?

  • Не знаю

12 чел

10 чел

Сколько времени человек может обходиться без воды?

  • 3дня
  • 10дней
  • 14дней

5 чел

15 чел

2 чел

Анализ анкет показал, что большинство учащихся 2 класса (10 человек) затрудняются в выборе ответа на вопрос: «Может ли вода растворять вещества?» Поэтому а ктуальность нашего проекта заключается в возможности на практике познакомить всех желающих с одним из основных свойств воды - растворимостью, выяснить насколько это свойство необходимо каждому живому существу, какое свойство воды человек использует, когда моет посуду, стирает белье, моется сам?

Многим кажется, что они хорошо знают воду. Ведь все ежедневно умываются, пьют воду, часто наблюдают, как идет дождь, как течет река. Но оказывается, не так все просто в природе. В ней еще много тайн. Ученые стараются разгадать их. А мы начнем с простого: исследуем в условиях школы растворимость воды.

Давайте с помощью опыта откроем завесу тайны воды.

Цель опыта: показать, что вода - растворитель.

Опыт №1:

В стакан с питьевой водой я положила 1 чайную ложку соли, 1 минуту перемешала воду, обратила внимание на то, что вода прозрачная, на вкус стала солёной, значит соль растворилась. Вода – растворитель.

Опыт № 2:

В стакан с питьевой водой я положила 1 чайную ложку сахара, 1 минуту перемешала воду, обратила внимание на то, что вода прозрачная, на вкус стала сладкой, значит сахар растворился. Вывод: вода – растворитель.

Опыт № 3:

В стакан с питьевой водой я положила 1ложку песка, 1 минуту перемешала воду, обратила внимание на то, что вода стала грязная, мутная, немного постояв, на дне появился осадок, значит песок не растворился. Вывод: вода растворяет не все вещества.

Опыт № 4:

В стакан с питьевой водой я положила 1ложку размельченного мела, 1 минуту перемешала воду, обратила внимание на то, что вода стала белого цвета, немного постояв, мел осел на дно, появился осадок, значит мел не растворился.

Вывод: вода растворяет не все вещества.

Вывод: вода-растворитель, но не все вещества в ней растворяются.

Заключение

Опытным путем удалось выяснить, что вода является растворителем многих веществ, поэтому она необходима для жизни живым существам.

Организмы животных и растений содержат от 50 до 90% воды. В организме человека вода составляет около 65% от массы тела. Потеря организмом человека более 10% воды может привести к смерти. При продолжительности жизни 70 лет человек потребляет 25т воды. Это мы узнали из учебника и другой научной литературы.

В воде в незначительной степени растворяются даже золото, серебро, железо, стекло. Из-за способности воды растворять другие вещества ее никогда нельзя назвать абсолютно чистой. Понятие «чистая» вода условно.

Люди давно заметили, что вода, налитая в серебряные сосуды, долго не портится. Дело в том, что в ней содержится растворенное серебро, которое губительно действует на бактерии, находящиеся в воде. «Серебряная» вода используется, в частности, космонавтами во время полетов.

В воде растворяются не только твердые и жидкие вещества, но и газы, например, растворенным в воде кислородом дышат рыбы, а также другие животные и растения. Ни один процесс в живых организмах не проходит без участия воды. Растениям она необходима для поглощения веществ из почвы, продвижения их по растению в виде растворов, для прорастания семян.

Наша гипотеза подтвердилась: с оль, сахар растворяются в воде, мел и песок не растворяются в воде. Значит, растворимость – это важное свойство воды.

Вы слыхали о воде? Говорят, она везде!

В луже, в море, в океане и в водопроводном кране.

Как сосулька, замерзает, в лес туманом заползает,

Ледником в горах зовется, лентой серебристой вьется.

Мы привыкли, что вода – наша спутница всегда!

Без нее нам не умыться, не наесться, не напиться.

Смею вам я доложить: без нее нам не прожить!

СПАСИБО ЗА ВНИМАНИЕ!

Сегодня мы поговорим о веществе – воде!


А видел ли кто-нибудь из вас воду?

Вопрос показался вам нелепым? Но он относится к совершенно чистой воде, в которой нет никаких примесей. Если быть честным и точным в ответе, то придется сознаться, что такую воду ни я, ни вы пока не видели. Именно поэтому на стакане с водой после надписи «Н 2 О» стоит знак вопроса. Значит, в стакане не чистая вода, а что тогда?

В этой воде растворены газы: N 2 , O 2 , CO 2 , Ar, соли из почвы, катионы железа из водопроводных труб. Кроме того, в ней взвешены мельчайшие частицы пыли. Вот что мы называем ч и с т о й в о д о й! Много ученых работает над решением трудной проблемы – получить абсолютно чистую воду. Но пока получить такую ультрачистую воду не удалось. Однако вы можете возразить, что есть дистиллированная вода. Кстати, что она собой представляет?

На самом деле мы получаем такую воду, когда стерилизуем банки перед консервированием. Переворачиваем банку вверх дном, помещаем ее над кипящей водой. На донышке банки появляются капельки, это и есть дистиллированная вода. Но как только мы перевернем банку, в нее заходят газы из воздуха, и снова в банке – раствор. Поэтому грамотные хозяйки стараются сразу после стерилизации заполнить банки нужным содержимым. Говорят, что продукты в этом случае будут храниться дольше. Возможно, они правы. Можете поэкспериментировать! Именно потому, что вода способна растворять в себе различные вещества, ученые не могут до сих пор получить идеально чистую воду в больших объемах. А она бы так пригодилась, например, в медицине для приготовления лекарств.

Кстати, находясь в стакане, вода «растворяет» стекло. Поэтому чем толще стекло, тем дольше прослужат стаканы. А что такое морская вода?

Это раствор, в котором содержится много веществ. Например, поваренная соль. А как можно выделить поваренную соль из морской воды?

Выпариванием.Кстати, именно так поступали наши предки. В Онеге были солеварни, где из морской воды выпаривали соль. Соль продавали новгородским купцам, покупали своим невестам и женам дорогие украшения, шикарные ткани. Таких нарядов, как у поморок, не было даже у московских модниц. А все лишь благодаря знаниям свойств растворов! Итак, сегодня мы с вами говорим о растворах и растворимости. Запишем в тетради определение раствора.

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Раccмотрим схемы 1–2 и разберем, какие бывают растворы.


Какой из растворов вы предпочтете, готовя суп? Почему?

Определите, где разбавленный раствор, где концентрированный раствор медного купороса?

Если в определённом объёме раствора содержится мало растворённого вещества, то такой раствор называют разбавленным , если много – концентрированным .





Определите, где какой раствор?

Не следует смешивать понятия «насыщенный» и «концентрированный» раствор, «ненасыщенный» и «разбавленный» раствор.

Одни вещества хорошо растворяются в воде, другие мало, а третьи – не растворяются совсем. Посмотрите видео "РАСТВОРИМОСТЬ ТВЁРДЫХ ВЕЩЕСТВ В ВОДЕ"

Выполните задание в тетради: Распределите предложенные вещества - СO 2 , H 2 , O 2 , H 2 SO 4 , Уксус, NaCl,Мел, Ржавчина, Растительное масло, Спирт в пустые столбики таблицы 1, используя свой жизненный опыт.

Таблица 1

Растворенное
вещество

Примеры веществ

Растворимые

Малорастворимые

Газ



Жидкость



Твердое вещество



А можете ли вы сказать о растворимости FeSO 4 ?

Как же быть?

Для того чтобы определить растворимость веществ в воде, мы будем пользоваться таблицей растворимости солей, кислот и оснований в воде. Она находится в приложениях к уроку.

В верхней строке таблицы – катионы, в левом столбце – анионы; ищем точку пересечения, смотрим букву – это и есть растворимость.

Определим растворимость солей: AgNO 3 , AgCl, CaSO 4 .

Растворимость увеличивается с ростом температуры (бывают исключения). Вы прекрасно знаете, что удобнее и быстрее растворять сахар в горячей, а не в холодной воде. Посмотрите "Тепловые явления при растворении"

Попробуйте сами, пользуясь таблицей, определить растворимость веществ.

Задание. Определить растворимость следующих веществ: AgNO 3 , Fe(OH) 2 , Ag 2 SO 3 , Ca(OH) 2 , CaCO 3 , MgCO 3 , KOH.

ОПРЕДЕЛЕНИЯ по теме «Растворы»

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Насыщенный раствор – это раствор, в котором данное вещество при данной температуре больше не растворяется.

Ненасыщенный раствор - это раствор, в котором при данной температуре вещество ещё может растворяться.

Суспензией называют взвесь, в которой мелкие частицы твёрдого вещества равномерно распределены между молекулами воды.

Эмульсией называют взвесь, в которой мелкие капельки какой-либо жидкости распределены между молекулами другой жидкости.

Разбавленные растворы - растворы с небольшим содержанием растворенного вещества.

Концентрированные растворы - растворы с большим содержанием растворенного вещества.

ДОПОЛНИТЕЛЬНО:

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные . По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные .

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным , а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным .

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) - величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным . Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Появление воды на планете Земля - первый и самый важный шаг к возникновению жизни. И в дальнейшем она продолжает играть роль вещества, без которого ничто живое не может существовать. Причина этого в том, что вода - универсальный растворитель, в котором происходят все самые главные биохимические процессы живых организмов. Это уникальное и многоликое вещество отлично растворяет как органические, так и неорганические вещества, окисляет почти все металлы и разрушает самые твердые горные породы. Все химические процессы протекают в воде с высокой скоростью, а образующиеся при этом соединения отличаются большой сложностью. Еще одно уникальное свойство воды - она остается жидкой в достаточно большом диапазоне температур - от 0 до 100°С, а это именно те температуры, которые чаще всего встречаются на Земле.

Одним словом - если бы перед нами стояла задача «подтолкнуть» развитие жизни на какой-нибудь планете, первым делом следовало бы создать воду.

В наши дни ученым известно более 175 природных и искусственно созданных разновидностей воды и около 200 разновидностей льда. Все они обладают различными, часто необычайными свойствами и по-разному воздействуют на процессы, происходящие в живых организмах. Состав этого вещества почти всегда одинаков, но талая, родниковая, «омагниченная», «живая» и «мертвая», ионизированная, «твердая», «желеобразная», «резиновая», «скользкая», «сухая», «вязкая», «крещенская» и многие другие виды воды отличаются друг от друга порой даже больше, чем различные химические соединения.

Если добавить в воду крохотное количество особых полимерных соединений, она станет «скользкой»: стальной шарик в такой воде опускается на дно сосуда в 2,5 раза быстрее, чем в обычной. Такая вода незаменима при тушении пожаров.

Малые дозы некоторых соединений кремния делают воду «сухой». Существует даже «резиновая» вода, которая, вместо того чтобы выливаться из наклоненного сосуда, вытягивается плотным эластичным жгутом.

И еще одно удивительное свойство воды - она обладает «памятью»! Строение этого вещества далеко не так просто, как может показаться на первый взгляд. Во-первых, молекулы воды имеют как положительный, так и отрицательный электрический заряды и представляют собой крохотные «магнитики», способные по-разному ориентироваться в пространстве. Кроме того, молекулы воды могут образовывать «сообщества» - их называют кластерами. Такие «сообщества», насчитывающие несколько сотен молекул, превращают воду в своего рода полимер и способствуют тому, что вода как бы «запоминает» информацию обо всех процессах, которые с ней происходили. Объем «памяти» воды намного превышает емкость памяти самых сложных электронных запоминающих устройств, созданных человеком.

Одним из проявлений «памяти» воды является то, что она способна некоторое время сохранять свойства раствора даже после того, как в ней не остается ни единой молекулы растворенного вещества.

Вода и сегодня - одна из самых больших загадок природы. Человек тысячелетиями имел с ней дело, но структура воды была раскрыта наукой совсем недавно, и эти исследования далеко не завершены. Главная тайна воды заключается в способности ее молекул к самоорганизации. Кластеры воды включают до 912 молекул, кроме того в жидкой воде могут образовываться структуры, напоминающие решетки кристаллов, в которые входят до 57 молекул. Некоторые кластеры не превращаются в лед даже при температуре ниже - 150 °С. Таким образом, в воде при любой температуре одновременно существуют «организованная» и «неорганизованная» части. Этим, вероятно, и объясняется многообразие ее свойств.

Самым распространенным растворителем на нашей планете является вода. Тело среднего человека мас–сой 70 кг содержит примерно 40 кг воды. При этом около 25 кг воды приходится на жидкость внутри клеток, а 15 кг составляет внеклеточная жидкость, в которую входят плазма крови, межклеточная жидкость, спинно-моз-говая жидкость, внутриглазная жидкость и жидкое содержимое желудочно-кишечного тракта. У животных и растительных организмов вода составляет обычно бо–лее 50%, а в ряде случаев содержание воды достигает 90-95%.

Вследствие своих аномальных свойств вода – уни–кальный растворитель, прекрасно приспособленный для жизнедеятельности.

Прежде всего вода хорошо растворяет ионные и мно–гие полярные соединения. Такое свойство воды связа–но в значительной мере с ее высокой диэлектрической проницаемостью (78,5).

Другой многочисленный класс веществ, хорошо раст–воримых в воде, включает такие полярные органиче–ские соединения, как сахара, альдегиды, кетоны, спир–ты. Их растворимость в воде объясняется склонностью молекул воды к образованию полярных связей с поляр–ными функциональными группами этих веществ, на–пример с гидроксильными группами спиртов и сахаров или с атомом кислорода карбонильной группы альдеги–дов и кетонов. Ниже приведены примеры водородных связей, важных для растворимости веществ в биологи–ческих системах. Вследствие высокой полярности во–да вызывает гидролиз веществ.

Так как вода составляет основную часть внутренней среды организма, то она обеспечивает процессы всасывания, передвижения питательных веществ и продуктов обмена в организме.

Необходимо отметить, что вода является конечным продуктом биологического окисления веществ, в частно–сти глюкозы. Образование воды в результате этих про–цессов сопровождается выделением большого коли–чества энергии – приблизительно 29 кДж/моль.

Важны и другие аномальные свойства воды: высо–кое поверхностное натяжение, низкая вязкость, высо–кие температуры плавления и кипения и более высокая плотность в жидком состоянии, чем в твердом.

Для воды характерно наличие ассоциатов – групп молекул, соединенных водородными связями.

В зависимости от сродства к воде функциональные группы растворяемых частиц подразделяются на гид–рофильные (притягивающие воду), легко сольватируе-мые водой, гидрофобные (отталкивающие воду) и ди-фильные.

К гидрофильным группам относятся полярные функ–циональные группы: гидроксильная -ОН, амино -NH 2 , тиольная -SH, карбоксильная -СООН. К гидрофоб–ным – неполярные группы, например углеводородные радикалы: СНз-(СН 2) п -, С 6 Н 5 -. К дифильным отно–сят вещества (аминокислоты, белки), молекулы кото–рых содержат как гидрофильные группы (-ОН, -NH 2 , -SH, -СООН), так и гидрофобные группы: (СН 3 – (СН 2) п,- С 6 Н 5 -).

При растворении дифильных веществ происходит изменение структуры воды как результат взаимодей–ствия с гидрофобными группами. Степень упорядо–чения молекул воды, близко расположенных к гидро–фобным группам, увеличивается, и контакт молекул воды с гидрофобными группами сводится к миниму–му. Гидрофобные группы, ассоциируясь, выталки–вают молекулы воды из области своего расположения.

Самым распространенным растворителем на нашей планете является вода. Тело среднего человека мас–сой 70 кг содержит примерно 40 кг воды. При этом около 25 кг воды приходится на жидкость внутри клеток, а 15 кг составляет внеклеточная жидкость, в которую входят плазма крови, межклеточная жидкость, спинно-моз-говая жидкость, внутриглазная жидкость и жидкое содержимое желудочно-кишечного тракта. У животных и растительных организмов вода составляет обычно бо–лее 50%, а в ряде случаев содержание воды достигает 90-95%.

Вследствие своих аномальных свойств вода – уни–кальный растворитель, прекрасно приспособленный для жизнедеятельности.

Прежде всего вода хорошо растворяет ионные и мно–гие полярные соединения. Такое свойство воды связа–но в значительной мере с ее высокой диэлектрической проницаемостью (78,5).

Другой многочисленный класс веществ, хорошо раст–воримых в воде, включает такие полярные органиче–ские соединения, как сахара, альдегиды, кетоны, спир–ты. Их растворимость в воде объясняется склонностью молекул воды к образованию полярных связей с поляр–ными функциональными группами этих веществ, на–пример с гидроксильными группами спиртов и сахаров или с атомом кислорода карбонильной группы альдеги–дов и кетонов. Ниже приведены примеры водородных связей, важных для растворимости веществ в биологи–ческих системах. Вследствие высокой полярности во–да вызывает гидролиз веществ.

Так как вода составляет основную часть внутренней среды организма, то она обеспечивает процессы всасывания, передвижения питательных веществ и продуктов обмена в организме.

Необходимо отметить, что вода является конечным продуктом биологического окисления веществ, в частно–сти глюкозы. Образование воды в результате этих про–цессов сопровождается выделением большого коли–чества энергии – приблизительно 29 кДж/моль.

Важны и другие аномальные свойства воды: высо–кое поверхностное натяжение, низкая вязкость, высо–кие температуры плавления и кипения и более высокая плотность в жидком состоянии, чем в твердом.

Для воды характерно наличие ассоциатов – групп молекул, соединенных водородными связями.

В зависимости от сродства к воде функциональные группы растворяемых частиц подразделяются на гид–рофильные (притягивающие воду), легко сольватируе-мые водой, гидрофобные (отталкивающие воду) и ди-фильные.

К гидрофильным группам относятся полярные функ–циональные группы: гидроксильная -ОН, амино -NH 2 , тиольная -SH, карбоксильная -СООН. К гидрофоб–ным – неполярные группы, например углеводородные радикалы: СНз-(СН 2) п -, С 6 Н 5 -. К дифильным отно–сят вещества (аминокислоты, белки), молекулы кото–рых содержат как гидрофильные группы (-ОН, -NH 2 , -SH, -СООН), так и гидрофобные группы: (СН 3 – (СН 2) п,- С 6 Н 5 -).



При растворении дифильных веществ происходит изменение структуры воды как результат взаимодей–ствия с гидрофобными группами. Степень упорядо–чения молекул воды, близко расположенных к гидро–фобным группам, увеличивается, и контакт молекул воды с гидрофобными группами сводится к миниму–му. Гидрофобные группы, ассоциируясь, выталки–вают молекулы воды из области своего расположения.

Методы очистки воды - способы отделения воды от нежелательных примесей и элементов. Существуют несколько методов очистки и все они входят в три группы методов:

· механические

· физико-химические

· биологические

Наиболее дешевая - механическая очистка - применяется для выделения взвесей. Основные методы: процеживание, отстаивание и фильтрование. Применяются, как предварительные этапы.

Химическая очистка применяется для выделения из сточных вод растворимых неорганических примесей. При обработке сточных вод реагентами происходит их нейтрализация, выделение растворенных соединений,обесцвечивание и обеззараживание стоков.

Физико-химическая очистка применяется для очистки сточных вод от грубо- и мелкодисперсионных частиц, коллоидных примесей, растворенных соединений. Высокопроизводительный, но в то же время дорогой способ очистки.

Биологические методы применяются для очистки от растворенных органических соединений. Метод основан на способности микроорганизмов разлагать растворенные органические соединения.

В настоящее время из общего количества сточных вод механической очистки подвергается 68 % всех стоков, физико-химической- 3 %, биологической - 29 %. В перспективе предполагается повысить долю очистки биологическим методом до 80 %, что улучшит качество очищаемой воды.

Основным методом повышения качества очистки вредных выбросов предприятиям при рыночной экономике является система штрафов, а также система плат за пользование очистными сооружениями.

Галоге́ны (от греч. ἁλός - соль и γένος - рождение, происхождение; иногда употребляется устаревшее название гало́иды ) - химические элементы 17-й группы периодической таблицы химических элементов Д. И. Менделеева (по устаревшей классификации - элементы главной подгруппы VII группы) .

Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены - энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F − , Cl − , Br − , I − , At − уменьшается.

К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At, а также (формально) искусственный элемент унунсептий Uus.

Все галогены - неметаллы. На внешнем энергетическом уровне 7 электронов, являются сильными окислителями. При взаимодействии с металлами возникает ионная связь, и образуются соли. Галогены, (кроме F) при взаимодействии с более электроотрицательными элементами, могут проявлять и восстановительные свойства вплоть до высшей степени окисления +7.

Особенности химии фтора

самый электроотрицательный элемент в таблице менделеева, в атмосфере фтора горит все даже кислород!

С вободный фтор представляет собой зеленоватожелтый газ с характерным резким и неприятным запахом. Его плотность по воздуху равна 1,13, температура кипения –187 °С, температура плавления –219 °С. Относительная атомная масса фтора равна 19. Во всех своих соединениях фтор одновалентен. Атомы фтора соединяются между собой в двухатомные молекулы.

Фтор образует соединения, прямо или косвенно, со всеми другими элементами, включая некоторые инертные газы.

С водородом фтор соединяется даже при –252 °С. При этой температуре водород превращается в жидкость, а фтор затвердевает, и все же реакция протекает с таким сильным выделением тепла, что происходит взрыв. Долгое время не было известно соединение фтора с кислородом, но в 1927 г. французским химикам удалось получить дифторид кислорода, образующийся при действии фтора на слабый раствор щелочи:

2F 2 + 2NаОН = 2NаF + OF 2 + H 2 O.

С азотом фтор непосредственно не соединяется, но косвенным путем известному специалисту по фтору Отто Руффу удалось получить в 1928 г. трифторид азота NF 3 . Известны и другие азотсодержащие соединения фтора. Сера под его действием при доступе воздуха воспламеняется. Древесный уголь загорается в атмосфере фтора при обычной температуре.

Самое простое средство тушения пожаров – вода – горит в струе фтора светло-фиолетовым пламенем.

Все металлы при тех или иных условиях взаимодействуют со фтором. Щелочные металлы воспламеняются в его атмосфере уже при комнатной температуре. Серебро и золото на холоде взаимодействуют с фтором очень медленно, а при накаливании сгорают в нем. Платина при обычных условиях не реагирует с фтором, но сгорает в нем при нагревании до 500–600 °С.

Из соединений других галогенов с металлами фтор вытесняет свободные галогены, становясь на их место. Кислород также легко вытесняется фтором из большинства кислородных соединений. Так, например, воду фтор разлагает с выделением кислорода (с примесью озона):

Н 2 O + F 2 = 2НF + O.

Соединяясь с водородом, фтор образует газообразное соединение – фтороводород НF. Водные растворы фтороводорода называют плавиковой кислотой. Газообразный НF – бесцветный газ с резким запахом, очень вредно действующий на дыхательные органы и слизистые оболочки. Обычный способ его получения - действие серной кислоты на плавиковый шпат СаF 2:

СаF 2 + Н 2 SО 4 = СаSO 4 + 2НF.

Для молекул фтороводорода характерна способность к их ассоциации (соединению). При температуре около 90 °С получается простая молекула НF с относительной молекулярной массой 20, но при понижении температуры до 32 °С измерения приводят к удвоенной формуле Н 2 F 2 . При температуре кипения фтороводорода, равной 19,4 °С, появляются ассоциаты Н 3 F 3 и Н 4 F 4 . При более низких температурах состав ассоциатов фтороводорода еще сложнее.

Плавиковая кислота действует на все металлы, за исключением золота и платины. На медь и серебро плавиковая кислота действует очень медленно. Слабые растворы ее совершенно не действуют на олово, медь и бронзу.

Устойчив к плавиковой кислоте и свинец, который покрывается слоем фторида свинца, предохраняющим металл от дальнейшего разрушения. Поэтому свинец и служит материалом для аппаратуры в производстве плавиковой кислоты.

Склонность молекул НF к ассоциации приводит к тому, что кроме средних солей фтороводородной кислоты известны и кислые, например КНF 2 (из нее электролизом получают фтор). В этом заключается ее отличие от других галогеноводородных кислот, дающих только средние соли.

Характерная особенность плавиковой кислоты, отличающая ее от всех других кислот, – чрезвычайно легкое ее действие на кремнезем SiO 2 и соли кремниевой кислоты:

SiO 2 + 4НF = SiF 4 + 2H 2 O.

Тетрафторид кремния SiF 4 – газ, улетучивающийся при реакции.

Действуя на кремнезем, входящий в состав стекла, плавиковая кислота разъедает стекло, поэтому хранить ее в стеклянных сосудах нельзя.

Из органических веществ плавиковая кислота действует на бумагу, дерево, пробку, обугливая их. На пластик действует слабо, совершенно не действует на парафин, чем и пользуются при хранении плавиковой кислоты в сосудах, сделанных из этого материала.

Ф тор довольно распространен в природе. Процентное содержание его в земной коре приближается к содержанию таких элементов, как азот, сера, хром, марганец и фосфор. Промышленное значение имеют, однако, только два фтористых минерала - плавиковый шпат и криолит. Кроме того, фтор входит в сравнительно небольшом количестве в состав апатитов. При переработке природных фосфатов на искусственные удобрения в качестве побочных продуктов получают фтористые соединения.

Плавиковый шпат, называемый иначе флюоритом, или плавиком, является по своему составу фторидом кальция CaF 2 .В природе плавиковый шпат может встречаться как в виде отдельных кристаллов, так и в сплошных массах. Образование месторождений плавикового шпата геологи объясняют следующим образом. При остывании некогда жидкой массы земной коры внутри нее образовались трещины и пустоты. Когда в такие пустоты, возникшие внутри пород, содержащих в своем составе кальций, проникали растворы или вулканические газы, содержащие фтор, происходило взаимодействие между кальцием породы и фтором раствора или газа. В результате такого взаимодействия пустоты заполнялись массой фторида кальция. Таково происхождение плавикового шпата.

Замечательно разнообразие окраски плавикового шпата: он может быть совершенно бесцветным (прозрачным), белым, розовым, голубым, зеленым, красным, фиолетовым. Наиболее часто встречающиеся его окраски - зеленая и фиолетовая.

Мощные залежи плавикового шпата находятся в американских штатах Иллинойс, Кентукки, Колорадо.

Элементарный фтор в настоящее время нашел пока единственное широкое применение: в деле обеззараживания питьевой воды. Но в отличие от своего аналога хлора, который служит для той же цели непосредственно, фтор используется здесь косвенным путем. Действием фтора на воду получают озон, который и применяется для стерилизации питьевой воды.

С питьевой водой, кстати, фтор поступает в наш организм. При недостатке фтора уменьшается устойчивость эмали зубов против содержащихся в пище кислот.

Многие фторсодержащие вещества очень важны для современной науки и техники. Большое значение получили соединения фтора с углеродом, называемые фторуглеродами. В природе они не встречаются и получаются исключительно искусственно. Фторуглероды обладают рядом ценных свойств: они не горят, не подвергаются коррозии, гниению и т.д. Возможности их практического применения все время расширяются. Например, фторхлорпроизводные простейших углеводородов (СН 4 и др.) – так называемые фреоны – широко применяются как хладагенты в холодильных установках на судах, железнодорожных вагонах, в бытовых холодильниках и т.п.

Молекулярный хлор и его основные соединения