Строение и функции днк. Какова биологическая роль ДНК? Строение и функции Днк в клетке обеспечивает

Вспомните!

Почему нуклеиновые кислоты относят к гетерополимерам?

Состоят из разных мономеров – нуклеотидов, но сами нуклеотиды различаются между собой некоторыми структурами.

Что является мономером нуклеиновых кислот?

Нуклеотиды

Какие функции нуклеиновых кислот вам известны?

Хранение и передача наследственной информации. В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов. Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме. В РНК каждый ее тип выполняет свою функцию в зависимости от своего строения. м-РНК – копия участка ДНК, где записаны информация о числе, составе и последовательности аминокислотных остатков, определяющих структуру и функции белковой молекулы. В данной РНК заключен план построения молекулы полипептида. т-РНК – ее роль состоит в присоединении молекулы аминокислоты и транспортировке ее к месту синтеза белка. р-РНК – соединяется с белком и образует особые органоиды – рибосомы, на которых и осуществляется сборка белковых молекул в клетке любого живого организма.

Какие свойства живого определяются непосредственно строением и функциями нуклеиновых кислот?

Наследственность, изменчивость, размножение

Вопросы для повторения и задания

1. Что такое нуклеиновые кислоты? Почему они получили такое название?

Нуклеиновые кислоты – это биополимеры, мономерами которых являются нуклеотиды. От лат. «нуклеос» - ядро, так как эти кислоты располагаются, или синтезируются в ядре, или у прокариот функцию ядерной информации выполняет нуклеоид (ДНК илиРНК).

2. Какие типы нуклеиновых кислот вы знаете?

ДНК, РНК: и-РНК, т-РНК, р-РНК.

4. Назовите функции ДНК. Как взаимосвязаны строение и функции ДНК?

Хранение и передача наследственной информации – располагается ДНК строго в ядре.

Молекула ДНК способна к самовоспроизведению путем удвоения. Под действием ферментов двойная спираль ДНК раскручивается, связи между азотистыми основаниями разрываются.

В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов.

Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме.

5. Какие виды РНК существуют в клетке, где они синтезируются? Перечислите их функции.

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Все виды РНК синтезируются на матрице ДНК.

6. Достаточно ли знать, какой моносахарид входит в состав нуклеотидов, чтобы понять, о какой нуклеиновой кислоте идёт речь?

Да, в состав РНК входит рибоза.

В состав ДНК входи дезоксирибоза.

Виды РНК не возможно будет по одному моносахариду распознать.

7. Фрагмент одной цепи ДНК имеет следующий состав: А-Г-Ц-Г-Ц-Ц-Ц-Т-А-. Используя принцип комплементарности достройте вторую цепь.

А-Г-Ц-Г-Ц-Ц-Ц-Т-А

Т-Ц-Г-Ц-Г- Г-Г-А-Т

Подумайте! Вспомните!

1. Почему в клетках существует три вида молекул РНК, но только один вид ДНК?

ДНК – самая крупная молекула, из ядра выйти не может, поры маловаты. РНК мелкие молекулы, каждая выполняет свою функцию, обеспечивая различные функции в клетке, одновременно работая. На матрице ДНК одновременно может синтезироваться множество видов РНК, и все они идут выполнять свои функции.

3. Какие виды РНК будут одинаковы у всех организмов? Какой вид РНК обладает максимальной изменчивостью? Объясните свою точку зрения.

и-РНК и т-РНК будет у всех организмов одинаковая, так как биосинтез белка идет по единому механизму, а т-РНК переносит одни и те же 20 аминокислот. р-РНК может быть иной.

В данной статье вы сможете узнать биологическую роль ДНК. Итак, данная аббревиатура всем знакома еще со школьной скамьи, но далеко не все имеют представление, что это такое. В памяти после школьного курса биологии остаются минимальные знания по генетике и наследственности, так как эту сложную тему детям дают только поверхностно. Но эти знания (биологическая роль ДНК, оказываемое влияние на организм) могут быть невероятно полезными.

Начнем с того, что нуклеиновые кислоты выполняют важную функцию, а именно - обеспечивают непрерывность жизни. Эти макромолекулы представлены в двух формах:

  • ДНК (DNA);
  • РНК (RNA).

Они являются передатчиками генетического плана строения и функционирования клеток организма. Поговорим о них более подробно.

ДНК и РНК

Начнем с того, какая отрасль науки занимается такими сложными вопросами, как:

  • изучение принципов хранения ;
  • ее реализация;
  • передача;
  • изучение структуры биополимеров;
  • их функции.

Все это изучается молекулярной биологией. Именно в этой отрасли биологических наук можно найти ответ на вопрос о том, какова биологическая роль ДНК и РНК.

Эти высокомолекулярные соединения, образованные из нуклеотидов, имеют название "нуклеиновые кислоты". Именно здесь хранится информация об организме, которая определяет развитие особи, рост и наследственность.

Открытие дезоксирибонуклеиновой и приходится на 1868 год. Тогда ученым удалось обнаружить их в ядрах лейкоцитов и сперматозоидах лося. Последующее изучение показало, что ДНК можно обнаружить во всех клетках растительной и животной природы. Модель ДНК была представлена в 1953 году, а Нобелевская премия за открытие вручена в 1962 году.

ДНК

Начнем этот раздел с того, что всего выделяется 3 типа макромолекул:

  • дезоксирибонуклеиновая кислота;
  • рибонуклеиновая кислота;
  • белки.

Сейчас мы более подробно рассмотрим строение, биологическую роль ДНК. Итак, этот биополимер передает данные о наследственности, особенностях развития не только носителя, но и всех предыдущих поколений. - нуклеотид. Таким образом, ДНК является главным компонентом хромосом, содержащим генетический код.

Как становится возможной передача этой информации? Все дело заключается в умении этих макромолекул самовоспроизводиться. Число их бесконечно, что можно объяснить большими размерами, а как следствие - огромным количеством всевозможных последовательностей нуклеотидов.

Структура ДНК

Для того чтобы понять биологическую роль ДНК в клетке, необходимо ознакомиться со структурой данной молекулы.

Начнем с самого простого, все нуклеотиды в своей структуре имеют три компонента:

  • азотистое основание;
  • пентозный сахар;
  • фосфатную группу.

Каждый отдельный нуклеотид в молекуле ДНК содержит одно азотистое основание. Оно может быть абсолютно любым из четырех возможных:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин).

А и Г - пурины, а Ц, Т и У (урацил) - пирамидины.

Существует несколько правил соотношения азотистых оснований, именуемых правилами Чаргаффа.

  1. А = Т.
  2. Г = Ц.
  3. (А + Г = Т + Ц) можем перенести все неизвестные в левую сторону и получить: (А + Г)/(Т + Ц) = 1 (эта формула является наиболее удобной при решении задач по биологии).
  4. А + Ц = Г + Т.
  5. Величина (А + Ц)/(Г + Т) постоянная. У человека она равняется 0,66, а вот, например, у бактерии - от 0,45 до 2,57.

Строение каждой молекулы ДНК напоминает двойную закрученную спираль. Обратите внимание на то, что полинуклеотидные цепи при этом являются антипараллельными. То есть расположение нуклеотидных пар у одной цепи имеет обратную последовательность, чем у другой. Каждый виток этой спирали содержит целых 10 нуклеотидных пар.

Как же скрепляются между собой эти цепочки? Почему молекула прочная и не распадается? Все дело в водородной связи между азотистыми основаниями (между А и Т - две, между Г и Ц - три) и гидрофобном взаимодействии.

В завершение раздела хочется упомянуть о том, что ДНК являются самыми крупными органическими молекулами, длина которых варьируется от 0,25 до 200 нм.

Комплементарность

Остановимся более подробно на парных связях. Уже мы говорили о том, что пары азотистых оснований образуются не хаотичным характером, а в строгой последовательности. Так, аденин может связаться только с тимином, а гуанин - только с цитозином. Это последовательное расположение пар в одной цепи молекулы диктует расположение их в другой.

При репликации или удвоении для образования новой молекулы ДНК обязательно соблюдается данное правило, имеющее название "комплементарность". Можно заметить следующую закономерность, которую упоминали в сводке правил Чаргаффа - одинаково число следующих нуклеотидов: А и Т, Г и Ц.

Репликация

Теперь поговорим о биологической роли репликации ДНК. Начнем с того, что у данной молекулы есть эта уникальная способность к самовоспроизведению. Под этим термином понимается синтез дочерней молекулы.

В 1957 году было предложено три модели данного процесса:

  • консервативная (сохраняется исходная молекула и образуется новая);
  • полуконсервативная (разрыв исходной молекулы на моноцепи и присоединение комплементарных оснований к каждой из них);
  • дисперсная (распад молекулы, репликация фрагментов и сбор в случайном порядке).

Процесс репликации имеет три этапа:

  • инициация (расплетение участков ДНК при помощи фермента хеликазы);
  • элонгация (удлинение цепи путем присоединения нуклеотидов);
  • терминация (достижение необходимой длины).

У этого сложного процесса есть особенная функция, то есть биологическая роль - обеспечение точной передачи генетической информации.

РНК

Рассказали, в чем заключается биологическая роль ДНК, теперь предлагаем переходить к рассмотрению (то есть РНК).

Начнем этот раздел с того, что эта молекула имеет не менее важное значение по сравнению с ДНК. Мы ее можем обнаружить абсолютно в любом организме, клетках прокариот и эукариот. Данная молекула наблюдается даже в некоторых вирусах (речь идет об РНК-содержащих вирусах).

Отличительная особенность РНК - наличие одной цепи молекул, но, как и ДНК, она состоит из четырех азотистых оснований. В данном случае это:

  • аденин (А);
  • урацил (У);
  • цитозин (Ц);
  • гуанин (Г).

Все РНК делятся на три группы:

  • матричная, которую принято называть информационной (сокращение возможно двумя формами: иРНК или мРНК);
  • рибосомная (рРНК).

Функции

Разобравшись с биологической ролью ДНК, ее строением и особенностями РНК, предлагаем переходить к особым миссиям (функциям) рибонуклеиновых кислот.

Начнем с иРНК или мРНК, основной задачей которой является передача информации от молекулы ДНК к цитоплазме ядра. Также мРНК является матрицей для синтеза белка. Что касается процентного содержания этого вида молекул, то оно достаточно низкое (порядка 4 %).

А процентное содержание рРНК в клетке равняется 80. Они необходимы, так как являются основой рибосом. Рибосомная РНК принимает участие в синтезе белка и сборке полипептидной цепи.

Адаптер, выстраивающий аминокислоты цепи - тРНК, переносящий аминокислоты в область синтеза белка. Процентное содержание в клетке - порядка 15 %.

Биологическая роль

Подведем итог: какова биологическая роль ДНК? В момент открытия этой молекулы очевидной информации по этому поводу дать не могли, но и сейчас далеко не все известно о значении ДНК и РНК.

Если говорить об общебиологическом значении, то их роль заключается в передаче наследственной информации от поколения к поколению, синтезе белка и кодировке белковых структур.

Многие высказывают и такую версию: эти молекулы связаны не только с биологической, но и с духовной жизнью живых существ. Если верить мнению метафизиков, то в ДНК содержится опыт прошлых жизней и божественная энергия.

Существует два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза - в ДНК, рибоза - в РНК) и остаток фосфорной кислоты.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований - аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований

Молекулы ДНК и РНК существенно различаются по своему строению и выполняемым функциям.

Молекула ДНК может включать огромное количество нуклеотидов - от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей , соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

При исследовании различных ДНК (у разных видов организмов) было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин - только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности (т. е. дополнения), а противоположные полинуклеотидные цепи называются комплементарными. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК - способность к самовоспроизведению или удвоению . При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим.

14 . Рибонуклеиновые кислоты, их виды, строение, назначение.

РНК - класс нуклеиновых кислот,линейных полимеровнуклеотидов, в состав которых входят остаток фосфорной кислоты, рибоза (в отличие отДНК, содержащей дезоксирибозу) и азотистые основания -аденин,цитозин,гуанини урацил (в отличие от ДНК, содержащий вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусов. РНК содержатся главным образом вцитоплазме клеток. Эти молекулы синтезируются в клетках всех клеточных живых организмов, а также содержатся в вироидах и некоторых вирусах. Основные функции РНК в клеточных организмах - это шаблон для трансляции генетической информации в белки и поставка соответствующих аминокислот к рибосомам. В вирусах является носителем генетической информации (кодирует белки оболочки и ферменты вирусов). Структура РНК .

Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил.

Виды и типы РНК клеток.

Существуют три типа РНК, каждый из которых выполняет свою особую роль в синтезе белка.

1. Матричная РНК переносит генетический код из ядра в цитоплазму, определяя таким образом синтез разнообразных белков.

2. Транспортная РНК переносит активированные аминокислоты к рибосомам для синтеза полипептидных молекул.

3. Рибосомная РНК в комплексе примерно с 75 разными белками формирует рибосомы - клеточные органеллы, на которых происходит сборка полипептидных молекул.

Матричная РНК представляет собой длинную одноцепочечную молекулу, присутствующую в цитоплазме. Эта молекула РНК содержит от нескольких сотен до нескольких тысяч нуклеотидов РНК, образующих кодоны, строго комплементарные триплетам ДНК.

Еще один тип РНК, играющий важнейшую роль в синтезе белка, называют транспортной РНК , поскольку он транспортирует аминокислоты к строящейся молекуле белка. Каждая транспортная РНК специфически связывается только с одной из 20 аминокислот, составляющих белковые молекулы. Транспортные РНК действуют как переносчики специфических аминокислот, доставляя их к рибосомам, на которых происходит сборка полипептидных молекул.

Каждая специфическая транспортная РНК распознает «свой» кодон матричной РНК, прикрепившейся к рибосоме, и доставляет соответствующую аминокислоту на соответствующую позицию в синтезируемой полипептидной цепи. Цепь транспортной РНК гораздо короче матричной РНК, содержит всего около 80 нуклеотидов и упакована в форме клеверного листа. На одном конце транспортной РНК всегда находится аденозинмонофосфат (АМФ), к которому через гидроксильную группу рибозы прикрепляется транспортируемая аминокислота. Транспортные РНК служат для прикрепления специфических аминокислот к строящейся полипептидной молекуле, поэтому необходимо, чтобы каждая транспортная РНК обладала специфичностью и в отношении соответствующих кодонов матричной РНК. Код, посредством которого транспортная РНК распознает соответствующий кодон на матричной РНК, также является триплетом и его называют антикодоном. Антикодон располагается примерно посередине молекулы транспортной РНК. Во время синтеза белка азотистые основания антикодона транспортной РНК прикрепляются с помощью водородных связей к азотистым основаниям кодона матричной РНК. Таким образом, на матричной РНК выстраиваются в определенном порядке одна за другой различные аминокислоты, формируя соответствующую аминокислотную последовательность синтезируемого белка.

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

1. Выберите примеры функций белков, осуществляемых ими на клеточном уровне жизни.

1) обеспечивают транспорт ионов через мембрану

2) входят в состав волос, перьев

3) формируют кожные покровы

4) антитела связывают антигены

5) запасают кислород в мышцах

6) обеспечивают работу веретена деления

2. Выберите признаки РНК.

1) содержится в рибосомах и ядрышке

2) способна к репликации

3) состоит из одной цепи

4) содержится в хромосомах

5) набор нуклеотидов АТГЦ

6) набор нуклеотидов АГЦУ

3. Какие функции выполняют липиды в организме животных?

1) ферментативную

2) запасающую

3) энергетическую

4) структурную

5) сократительную

6) рецепторную

4. Какие функ­ции выполняют уг­ле­во­ды в ор­га­низ­ме животных?

1) каталитическую

2) структурную

3) запасающую

4) гормональную

5) сократительную

6) энергетическую

5. Белки, в отличие от нуклеиновых кислот,

1) участвуют в образовании плазматической мембраны

2) входят в состав хромосом

3) участвуют в гуморальной регуляции

4) осуществляют транспортную функцию

5) выполняют защитную функцию

6) переносят наследственную информацию из ядра к рибосоме

6. Какие из пе­ре­чис­лен­ных бел­ков не­воз­м­ож­но об­на­ру­жить внут­ри мы­шеч­ной клетки?

2) гемоглобин

3) фибриноген

5) РНК-полимераза

6) трипсин

7. Выберите осо­бен­но­сти стро­е­ния мо­ле­кул белков.

1) со­сто­ят из жир­ных кислот

2) со­сто­ят из аминокислот

3) мо­но­ме­ры мо­ле­ку­лы удер­жи­ва­ют­ся пеп­тид­ны­ми связями

4) со­сто­ят из оди­на­ко­вых по стро­е­нию мономеров

5) пред­став­ля­ют собой мно­го­атом­ные спирты

6) чет­вер­тич­ная струк­ту­ра мо­ле­кул со­сто­ит из не­сколь­ких глобул

8. Выберите три функции, ха­рак­тер­ные толь­ко для белков.

1) энергетическая

2) каталитическая

3) двигательная

4) транспортная

5) структурная

6) запасающая

9. Какие функ­ции вы­пол­ня­ют в клет­ке мо­ле­ку­лы уг­ле­во­дов и липидов?

1) информационную

2) каталитическую

3) строительную

4) энергетическую

5) запасающую

6) двигательную

10. Все при­ведённые ниже химические элементы, кроме двух, являются органогенами. Опре­де­ли­те два при­зна­ка, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.

1) водород

5) кислород

11. Все при­ведённые ниже хи­ми­че­ские эле­мен­ты, кроме двух, яв­ля­ют­ся макроэлементами. Опре­де­ли­те два при­зна­ка, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.


12. Выберите ТРИ функ­ции ДНК в клетке

1) по­сред­ник в пе­ре­да­че наследственной информации

2) хра­не­ние наследственной информации

3) ко­ди­ро­ва­ние аминокислот

4) мат­ри­ца для син­те­за иРНК

5) регуляторная

6) струк­ту­ри­ро­ва­ние хромосом

13. Молекула ДНК

1) полимер, мономером которого является нуклеотид

2) полимер, мономером которого является аминокислота

3) двуцепочный полимер

4) одноцепочный полимер

5) содержит наследственную информацию

6) выполняет энергетическую функцию в клетке

14. Какие признаки характерны для молекулы ДНК?

1) состоит из одной полипептидной нити

2) состоит из двух полинуклеотидных нитей, закрученных в спираль

3) имеет нуклеотид, содержащий урацил

4) имеет нуклеотид, содержащий тимин

5) сохраняет наследственную информацию

6) переносит информацию о строении белка из ядра к рибосоме

15. Моносахариды в клет­ке выполняют функции:

1) энергетическую

2) со­став­ных компонентов полимеров

3) информационную

4) со­став­ных компонентов нук­ле­и­но­вых кислот

5) за­щит­ную

6) транспортную

16. Чем молекула иРНК отличается от ДНК?

1) переносит наследственную информацию из ядра к рибосоме

2) в состав нуклеотидов входят остатки азотистых оснований, углевода и фосфорной кислоты

3) состоит из одной полинуклеотидной нити

4) состоит из связанных между собой двух полинуклеотидных нитей

5) в ее состав входит углевод рибоза и азотистое основание урацил

6) в ее состав входит углевод дезоксирибоза и азотистое основание тимин

17. Все при­ве­ден­ные ниже при­зна­ки, кроме двух, являются функциями липидов. Опре­де­ли­те два при­зна­ка, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в таб­ли­цу цифры, под ко­то­ры­ми они ука­за­ны.

1) запасающую

2) гормональную

3) ферментативную

4) переносчика наследственной информации

5) энергетическую

18. Все приведённые ниже признаки, кроме двух, можно использовать для описания значения белков в организме человека и животных. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) служат основным строительным материалом

2) расщепляются в кишечнике до глицерина и жирных кислот

3) образуются из аминокислот

4) в печени превращаются в гликоген

5) в качестве ферментов ускоряют химические реакции

19. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы ДНК. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

4) способна самоудваиваться

5) в комплексе с белками образует хромосомы

20. Все приведённые ниже признаки, кроме двух, можно использовать для определения функций липидов в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) запасающая

2) регуляторная

3) транспортная

4) ферментативная

5) строительная

21. Все приведённые ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) осуществляют гомеостаз

2) переносят наследственную информацию из ядра к рибосоме

3) участвуют в биосинтезе белка

4) входят в состав клеточной мембраны

5) транспортируют аминокислоты

22. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы ДНК. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из двух цепей, образующих спираль

2) содержит нуклеотиды АТГЦ

3) в состав входит сахар рибоза

4) самоудваивается

5) участвует в процессе трансляции

23. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы инсулина. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1) состоит из аминокислот

2) гормон надпочечников

3) катализатор многих химических реакций

4) гормон поджелудочной железы

5) вещество белковой природы

24 Все перечисленные ниже признаки, кроме двух, можно использовать для описания яичного белка альбумина. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из аминокислот

2) пищеварительный фермент

3) денатурирует обратимо при варке яйца

4) мономеры связаны пептидными связями

5) молекула образует первичную, вторичную и третичную структуры

25. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из двух полинуклеотидных цепей, закрученных в спираль

2) переносит информацию к месту синтеза белка

3) в комплексе с белками строит тело рибосомы

4) способна самоудваиваться

5) переносит аминокислоты к месту синтеза белка

26. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы крахмала. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из одной цепи

2) хорошо растворяется в воде

3) в комплексе с белками образует клеточную стенку

4) подвергается гидролизу

5) является запасным веществом в мышечных клетках