Бензол и озон уравнение реакции. Ароматические углеводороды (арены)

Среди разнообразных реакций, в которые вступают ароматические соединения с участием бензольного кольца, в первую очередь обращают на себя внимание рассмотренные выше реакции замещения. Это происходит, потому что они протекают вопреки ожиданиям. При той степени ненасыщенности, которая присуща, например, бензолу, этому углеводороду более характерными должны были быть реакции присоединения. При определенных условиях так и происходит, бензол и другие арены присоединяют водородные атомы, галогены, озон и другие способные присоединяться реагенты.

11.5.5. Гидрирование. В присутствии катализаторов гидрирования (платина, палладий, никель) бензол и его гомологи присоединяют водород и превращаются в соответствующие циклогексаны. Так, бензол гидрируется над никелевым катализатором при 100-200 0 C и 105 атм.:

Гидрирование аренов по сравнению с алкенами имеет две особенности. Во-первых, арены значительно уступают алкенам в реакционной способности . Для сравнения с условиями гидрирования бензола укажем, что циклогексен гидрируется в циклогексан уже при 25 0 C и давлении в 1,4 атм. Во-вторых, бензол или не присоединяет, или присоединяет сразу три молекулы водорода . Получить гидрированием бензола продукты частичного гидрирования, такие как циклогексен или циклогексадиен, не удается.

Эти особенности при гидрировании, частном случае реакций присоединения к бензольному кольцу, обусловлены строением бензола. При превращении в циклогексан бензол перестает быть ароматической системой. Циклогексан содержит на 150,73 кДж энергии больше (энергия резонанса) и менее устойчив, чем бензол. Понятно, что перейти в это термодинамически менее устойчивое состояние бензол не склонен. Этим и объясняется меньшая реакционная способность бензола по отношению к водороду по сравнению с алкенами. Присоединение к ароматической системе возможно лишь с участием р -электронов единого электронного облака бензольного кольца. С началом процесса присоединения система перестает быть ароматической и получается богатая энергией и обладающая высокой реакционной способностью частица, которая гораздо охотнее вступает в реакцию присоединения, чем исходный арен.

11.5.6. Галогенирование. Результат взаимодействия галогена с бензолом зависит от экспериментальных условий. Каталитическое галогенирование ведет к образованию продуктов замещения. Оказалось, что ультрафиолет инициирует присоединение атомов галогена к бензольному ядру аренов. Сам бензол на свету присоединяет 6 атомов хлора и превращается в гесахлорциклогексан, представляющий смесь 9 пространственных изомеров

Один из этих изомеров, в котором 3 хлора занимают аксиальные связи, а еще 3 – экваториальные связи (γ-изомер, гексахлоран), оказался эффективным инсектицидом, средством борьбы с вредными насекомыми. Гексахлоран оказался слишком устойчивым в условиях биосферы и способным накапливаться в жировой ткани теплокровных и поэтому в настоящее время не применяется.

По своей реакционной способности по отношению к галогенам в реакциях присоединения бензол значительно уступает алкенам. Например, хлор и бром в четыреххлористом углероде даже в темноте при комнатной температуре присоединяются к циклогексену. В указанных условиях бензол не реагирует. Происходит это только при ультрафиолетовом освещении.

11.5.7. Озонирование. Озонирование - еще один пример, показывающий, что бензол как ненасыщенное соединение может вступить в реакцию присоединения. Озонирование бензола и изучение продуктов гидролиза триозонида было осуществлено еще в 1904 году (Гарриес )

Интересные результаты были получены при озонировании о -ксилола (1941 г., Вибо ). Дело в том, что состав продуктов озонирования зависит от положения двойных связей в бензольном кольце. Структура 1 с двойными связями между углеродами бензольного кольца, несущими метильные заместители, при озонировании и гидролизе озонида даст 2 молекулы метилглиоксаля и молекулу глиоксаля

Альтернативная структура II для о -ксилола должна была бы образовать 2 молекулы глиоксаля и молекулу диацетила

УДК 541.13: 669.871.4

Д.С. Гуров, А.В. Даровских, А.Г. Миков, В.И. Скудаев

Пермский национальный исследовательский политехнический университет

ИК-СПЕКТР ПРОДУКТОВ ОЗОНИРОВАНИЯ БЕНЗОЛА

Методом ИК-спектроскопии исследован процесс озонирования бензола. Обнаружено появление новых полос поглощения, отнесенных к колебаниям по связям С-Н и С=0 в продуктах озонирования. Наблюдалось образование нерастворимых озонидов бензола. Высказаны предположения о возможных направлениях процесса.

Ароматические углеводороды, одним из которых является бензол, служат сырьем для производства различных материалов, пластических масс, красителей, медикаментов, средств защиты растений, в производстве взрывчатых веществ, фармацевтических препаратов и др. В то же время бензол и его производные присутствуют как вредные компоненты в отходах предприятий, производящих эти материалы. Реакция бензола с озоном представляет интерес как в целях получения продуктов его озонирования, так и с целью обезвреживания отходов.

Известно, что озон устойчив к действию таких окислителей, как HMnO4, H2O2, OsO4 и др. . При взаимодействии с озоном образуются озониды, которые в присутствии воды на цинковом катализаторе распадаются до глиоксаля . Процесс окисления углеводородов в жидкой фазе протекает по цепному механизму с образованием на начальной стадии гидроперекисей . Опубликована работа по исследованию влияния озонирования на изменение компонентного состава каменноугольного сырого бензола с содержанием бензола около 30 % , из которой, однако, не ясно, что при этом происходит с самим бензолом.

Озонирование бензола проводили в реакторе барботажного типа. В стеклянный реактор диаметром 20 мм заливали 30 мл бензола, озон получали в озонаторе, через который пропускали кислород. Объемная скорость подачи озонокислородной смеси составляла 100 мл/мин при концентрации озона 1,5 % (0,61 моль/м). Процесс проводили при температуре 25 °С, пробы продуктов отбирали с помощью шприца и растворяли в тетрахлориде углерода в соотношении 5 мл пробы на 100 мл раствори-

теля. Раствор пробы помещали в кювету для жидкости с окнами КБг с постоянной толщиной слоя жидкости 0,171 мм и снимали ИК-спектр.

По окончании процесса на поверхности раствора и на стенках реактора обнаружен осадок светло-желтого цвета, который является, по-видимому, смесью озонидов бензола.

На рисунке приведены спектры бензола до начала озонирования и проб продуктов озонирования.

Волновое число, см-1

Рис. ИК-спектры раствора бензола и продуктов его озонирования в тетрахлориде углерода. Время озонирования, ч: 1 - 0; 2 - 2

Тетрахлорид углерода в области более 1550 см-1 не поглощает ИК-излучение. Бензол поглощает в области от 3000 до 3050 см-1. В процессе озонирования в спектрах продуктов появляется полоса с волновым числом 2900 см-1, относительная интенсивность этой полосы по сравнению с полосой бензола 3000 см-1 со временем увеличивается: через 0,5 ч - 0,05, через 1 ч - 0,09, через 1,5 ч - 0,12, через 2 ч -

0,15, через 2,5 ч - 0,16. Согласно литературным данным , эта полоса может быть отнесена к колебаниям по связи С-Н либо по связи О-Н в продуктах окисления бензола в группе, не связанной с кольцом. Вто-

рая новая полоса с заметно возрастающей интенсивностью и с волновым числом 1700 см-1 может быть отнесена к колебаниям по двойной связи С=0 в карбонильной или карбоксильной группе. Поэтому в продуктах озонирования бензола можно ожидать наличия смеси карбоновых кислот, ангидридов, альдегидов и кетонов.

В качестве основной схемы процесса взаимодействия бензола с озоном при 25 °С, как и с кислородом при 400 °С на катализаторе У205, возможно образование смеси малеиновой кислоты и ее ангидрида:

Проведенное исследование показало, что бензольное кольцо, устойчивое к действию многих окислителей, разрушается озоном при обычных температурах.

Список литературы

1. Березин Д.Б., Березин Б.Д., Курс современной органической химии. - М.: Высшая школа, 2001. - 768 с.

2. Разумовский С.Д., Заиков Г.Е. Озон и его реакции с органическими соединениями. - М.: Наука, 1974. - 322 с.

3. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления углеводородов в жидкой фазе. - М.: Наука, 1965. - 280 с.

4. Семенова С.А., Патраков Ю.Ф. Влияние озонирования на изменение компонентного состава каменноугольного сырого бензола // Журн. прикл. химии. - 2007. - Т. 80, вып. 5. - С. 871-875.

5. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений: учеб. пособие для хим. вузов / под ред. Б.В. Иоффе. - М.: Высшая школа, 1984. - 336 с.

Озонирование бензола

Существуют разработки метода синтеза глиоксаля озонированием бензола эквивалентным количеством озона с дальнейшим гидрированием получаемых продуктов для получения глиоксаля. Бензол присоединяет озон, образуя триозонид -- чрезвычайно взрывчатое вещество. Под действием воды озонид разлагается с образованием трех молекул глиоксаля по схеме Однако из-за высокой себестоимости получения озона и чрезвычайной взрывоопасности этот метод не представляет практической ценности.

Окисление глицерина хромовой кислотой

Еще одним возможным методом получения глиоксаля является окисление глицерина хромовой кислотой в присутствии серной кислоты при комнатной температуре. Наряду с глиоксалем образуется формальдегид в соответствии с уравнением реакции:

2Сr2О72-+ЗНОСН2СН(ОН)СН2ОН+16Н4-4Сr3+3(СНО)2+ЗН2СО+14H2 (1.6)

Скорость реакции окисления возрастает с увеличением концентрации ионов водорода. Предполагается, что активной окисляющей формой в реакции (1.6) является шестивалентный хром однозарядного иона HcrO3-. При исследовании реакции окисления глицерина были обнаружены свободные радикал-ионы, показывающие, что реакция окисления глицерина шестивалентным хромом может проходить по механизму как одно-, так и трехэлектронного переноса.

Предположено, что окисление глицерина шестивалентным хромом может идти по следующему механизму:


Механизм предусматривает образование нестабильного бинарного комплекса (1.8), который разлагается со скоростью, определяющей стадию трехэлектронного переноса с получением формальдегида, свободного радикал-иона глиоксаля и трехвалентного иона хрома. Образовавшийся радикал-ион может претерпевать дальнейшее окисление шестивалентным хромом, давая глиоксаль и пятивалентный хром (1.10), либо рекомбинирует, давая двухзарядный ион (1.10), который окисляется пятизарядным ионом хрома, давая две молекулы глиоксаля и трехвалентный ион хрома (1.11). Структура бинарного комплекса не установлена.

Недостатком данного метода получения глиоксаля является периодичность процесса, необходимость очистки образующейся смеси от серной кислоты, соединений хрома и образующегося в ходе процесса формальдегида.

Всероссийская олимпиада школьников по химии - 2004 года

"ЗАДАЧИ ПО ВЫБОРУ"

ФИЗИЧЕСКАЯ ХИМИЯ

Задача 1.

"Как простодушно сказали бы в позапрошлом -
да, уже позапрошлом – веке."
(Бахыт Кенжеев)

"В начале 1880 года Виктор Мейер начал весьма интересные опыты над плотностями пара галоидов при весьма высоких температурах. Опыты были затем повторены Крафтсом. Результат их тот, что плотности паров галоидов, которыя представляются нормальными для значительных интервалов температуры, делаются меньшими по мере возвышения температуры, различно для различных галоидов.

Температура Плотн. пара хлора Плотн. пара брома Плотн. пара иода
Ниже 440 о 2,45 5,52 8,78
440 о норм. норм. 8,72
900 о норм. норм. 8,11
1200 о норм. 4,5 6,07
1400 о - 1500 о 2,02 3,5 5,31

Предполагая, что наблюдаемое уменьшение плотностей пара галоидов не зависит от значительного изменения коэффициентов расширения газов при указанных температурах, приведенные данные могут быть объяснены…"
("Очерк развития химических воззрений" Н. Меншуткина, СПб., 1888. стр.301-302)

1. Чем может быть объяснено столь существенное изменение "плотности пара" для галогенов?
2. Оцените погрешность определения "плотности пара" (относительные %).
3. Рассчитайте состав "пара" для иода при указанных температурах (мольные доли).
4. Рассчитайте энергию связи I - I (кДж/моль).
5. Определите температуру плавления и кипения иода (о С) и рассчитайте энергию решетки иода, если давление паров над иодом составляет 1 мм рт.ст (133,32 Па) при 43,7 о С; 10 мм рт. ст. при 77,0 о; 100 мм рт.ст. при 122,4 о; 400 мм рт.ст. при 162,8 о.

Задача 2.

HX - одна из самых сильных органических кислот может быть получена по схеме:

Информация о составе представленных на схеме соединений:

Вещество

В последнее время возрос интерес к использованию молекулярного фтора в растворителях. При этом удается контролировать окислительную активность F 2 путем введения в раствор различных веществ. Кислота HX относится к подобным соединениям. Предполагаемые процессы с ее участием:

Уравнение Нернста для молекулярного фтора имеет вид:

Используемые растворители(solv): CH 3 CO 2 H, HCO 2 H, CF 3 CH 2 OH, CH 3 OH, CF 3 CO 2 H.

1. Определите неизвестные вещества на схеме и напишите уравнения реакций.

2. Полагая, что общие концентрации фтора(C 1) и кислоты(С 2) постоянны (С 1 <0,5С 2):
а) Выразите E 0 через E 0 (F 2 /F -) и K a (HF). (Положим E 0 =E 0 (F 2 ,H + /HF), E=E(F 2 ,H + /HF).)
б) Выразите E как функцию от C 2 и С 1 , если рН(С 2 , С 1 , solv) известен.

(Допустимые приближения позволяют обойтись без K 1 -K 3 .)

3. К раствору(п2) прибавили(С 3): а) BF 3 (C 3 <0,5C 1); б) NaX(C 3 < 4.Дайте объяснение тому, что K 1 и K 2 – слабо зависят от K a (solv), в то время как K 3 сильно возрастает при увеличении K a (solv). Расположите представленные растворители в ряд по увеличению K a ; как меняется E(С 2 ,С 1 =сonst) в этом ряду?
5.Подходящий растворитель поддерживает постоянство потенциала в процессе пропускания фтора в раствор и образует с F 2 только легко отделимые от целевого продукта соединения. Предложите подходящий растворитель из списка, обоснуйте.
6.Предложите один способ получения F 2 в лаборатории, не прибегая к электролизу.
7.Почему нельзя точно определить потенциал фтора в процессе эксперимента?

Задача 3.

Озонирование бензола

Реакцию озонирования используют в органической химии для синтеза различных классов соединений и установления строения непредельных соединений.
Озонирование бензола протекает в метилхлориде при –80 o С. Эту реакцию можно описать кинетической схемой:

1) Напишите структурные формулы озонидов А 1 , А 2 , А 3 . Какое вещество образуется при восстановлении A 3 цинком?
2) Другой способ получения озонидов – обезвоживание дигидроксиперекисей вида

фосфорным ангидридом. Напишите схемы получения моно-, ди- и полиозонида из указанной дигидроперекиси.
Одна из качественных реакций на перекисные соединения самого разнообразного строения – взаимодействие их эфирных растворов с раствором сульфата титанила в 60%-ной серной кислоте.
3) Каков аналитический сигнал и чем он обусловлен?
Рассмотрим приведенную выше кинетическую схему. Предположим, что озон взят в небольшом избытке по сравнению с суммарным уравнением.
4) а) На одном графике изобразите кривые зависимости концентраций веществ А 1 , А 2 , А 3 от времени в предположении, что k 1 k 2 k 3 .
б) На одном графике изобразите зависимости концентрации вещества А 1 от времени в двух случаях: 1) k 1 << k 2 ; 2) k 1 k 2 . в) Как вы считаете, какое из двух приближений – (б1) или (б2) – больше соответствует действительности? Почему?
г) Выразите скорость образования A 3 через концентрации озона и бензола при условии, что концентрации интермедиатов А 1 и А 2 стационарны. Чему равен общий порядок реакции?
Концентрацию озона в растворе можно поддерживать постоянной, непрерывно пропуская через раствор озоно-кислородную смесь. Рассмотрим кинетику реакции в этих условиях.

5) а) Выразите скорость образования A 3 через концентрации озона и бензола при условии, что концентрации А 1 и А 2 стационарны. Чему равен общий порядок реакции?
б) Во сколько раз изменится время полупревращения бензола при увеличении его начальной концентрации в 2 раза?
в) Решите кинетическое уравнение из (5а) и найдите зависимость концентрации продукта A 3 от времени. Начальные концентрации бензола и озона обозначьте 0 и 0 .

Задача 4.

Пероксид бензоила (ПБ) и динитрил 2,2"-диметил-2,2"-азодипропановой кислоты (2,2"-азо-бис-изобутиронитрил, АИБН) – стандартные инициаторы радикально-цепных процессов, легко распадающиеся гомолитически уже при небольшом повышении температуры. Энергия активации распада в инертных растворителях составляет 129 кДж/моль для ПБ и 130 кДж/моль для АИБН, а предэкспонт в уравнении Аррениуса (k = A e –E a/RT ) А = 10 14,5 c –1 для ПБ и 10 15,0 c –1 для АИБН. Распад идет по 1-му порядку.

Вопросы и задания.

1. Запишите формулы ПБ и АИБН и уравнения реакций их распада в инертном растворителе. Какие продукты могут при этом образоваться? Назовите их.
2. Связи C–N и N=N в азосоединениях достаточно прочные (295 и 420 кДж/моль соответственно). Почему же тогда АИБН легко образует радикалы при нагревании?
3. В одном из опытов при разложении синего раствора АИБН в течение 1-й минуты выделилось 0,5 мл газа (измеренного при комнатной температуре и давлении 735 мм), а после окончания реакции выделилось 1,250 л этого газа, измеренного при тех же условиях. Рассчитайте константу скорости распада АИБН в условиях опыта (время для нее указывать в секундах).
4. Оцените время, за которое АИБН в растворе распадется на 0,1% при температуре 25 о С, а также время полураспада. При какой температуре АИБН распадется на 50% за 5 часов?
5. Оцените тепловой эффект распада АИБН. Возможно ли его взрывное разложение и если да, то при каких обстоятельствах? Энергия разрыва тройной связи в молекуле азота 945 кДж/моль; энергию связи С–С принять равной 340 кДж/моль.
6. В одной из работ измеряли начальную скорость распада ПБ в кипящем бензоле. Если по полученным данным рассчитать константу скорости распада в предположении о 1-м порядке реакции, то окажется, что рассчитанная таким образом константа зависит от начальной концентрации ПБ:

Для объяснения этих результатов было предположено, что параллельно может идти бимолекулярная реакция распада ПБ. Рассчитайте по данным эксперимента истинную константу скорости мономолекулярного распада ПБ (рекомендуется использовать графический метод).
7. Когда разложение АИБН проводили в ксилоле при 108 о С в присутствии 2,6-диметил-п -бензохинона, спектр электронного парамагнитного резонанса (ЭПР) полученного раствора показал присутствие стабильных свободных радикалов; 7 равноотстоящих линий в спектре с расщеплением 0,573 мТ (миллитесла) свидетельствовали о присутствии в радикале 6 эквивалентных протонов, а расщепление каждой линии на три (с расстоянием между ними 0,137 мТ) – о присутствии двух эквивалентных протонов (T.L.Simandi и др., European Polymer Journal, 1989, том 25, c.501–507). По этим данным изобразите структуру образующегося радикала и подтвердите ее данными ЭПР (расщепление в спектре пропорционально плотности неспаренного электрона на данном атоме). Объясните стабильность образовавшихся радикалов. Как вы думаете, почему авторы опубликовали статью в указанном журнале?
Указание. Зависимость концентрации от времени для реакции 1-го порядка: с = с о e –kt или ln(c o /c ) = kt . Газовая постоянная R = 8,31 Дж/(моль К).


ХИМИЯ И ЖИЗНЬ

Задача 1.

Галичское озеро (Костромская обл., см. карту) имеет изрядно заиленное дно, 25 км в длину, 5 км в ширину, среднюю глубину 1.5 м, кратность водообмена ~ 1 раз в год. В озеро впадают несколько рек, из которых самые многоводные (если так можно говорить о тех жалких ручейках) – Средняя и Чёлсма. Выпадает из озера р. Вёкса. На озере стоит г. Галич (20 тыс. жителей, работают автокрановый завод, кожзавод, хлебозавод, обувная и швейная фабрики).
В четырех точках (см. карту) были отобраны пробы воды. Пробы отбирались с 3 по 8 августа 2003 года. Результаты анализов приведены в таблице.

Точка
Температура
рН
Прозрачность, см
Цветность, град
Щелочность общая, мМ
Щелочность свободная, мМ
Жесткость (Ca 2+ + Mg 2+), мМ
Кальций, мМ
Хлориды, мМ
О 2 , % от насыщения

Примечание: щелочность свободная – концентрация оснований, дающих рН>8.2, щелочность общая – концентрация всех оснований, которые можно оттитровать соляной кислотой. Разница между общей и свободной щелочностью, как правило, обусловлена гидрокарбонатами.
Из результатов видно, что, во-первых, рН воды в озере аномально высок, а во-вторых, концентрация солей в озере примерно в 3 раза меньше, чем в питающих его реках. Обоим фактам было предложено два объяснения. Первое: жители города активно стирают белье, что приводит к попаданию в озеро карбоната и фосфата натрия, защелачиванию воды и связыванию кальция с магнием. Второе: кожзавод сбрасывает в озеро стоки, содержащие известь.

1.Приведите уравнения реакций, приводящие к снижению концентраций катионов и анионов в озере по сравнению с питающими озеро реками по первой и второй гипотезе. Уравнения записать в ионной форме.
2.Является ли снижение концентрации солей в Галичском озере по сравнению с питающими его реками локальным (только в черте города) или по всему озеру? Ответ обоснуйте одним предложением.
3.Какие факты не укладываются в первую гипотезу повышения рН?
4.Какие факты не укладываются во вторую гипотезу повышения рН?
5.Какие факты не укладываются во вторую гипотезу снижения концентрации солей?
Существует также гипотеза, что снижение концентрации солей в озере по сравнению с питающими его реками обусловлено естественными причинами.
6.Какая это может быть причина? Напишите соответствующее уравнение реакции.
7.Как анализ ила может подтвердить или опровергнуть эту гипотезу?
8.Оцените толщину слоя этих веществ, откладывающегося за год, если считать, что отлагаются только они, а их плотность примерно равна 2000 г/дм 3 ?

Для справок: K a (H 2 O+CO 2) = 4.5? 10 -7 , K a (HCO 3 -) = 4.8? 10 -11 , K a (H 2 РO 4 -) = 6.2? 10 -8 , K a (HРO 4 2-) = 5.0? 10 -13 , ПР(CaCO 3) = 4? 10 -9 , ПР(MgCO 3) = 2? 10 -5 , ПР(Ca 3 (PO 4) 2) = 2? 10 -29 .

Задача 2.

Насекомые слишком малы, чтобы искать себе пару в окружающем мире с помощью глаз, как это обычно делает человек. Для этой цели они выделяют специальные вещества – половые аттрактанты, или феромоны. Несколько миллиграммов феромона, выделенного самкой какой-нибудь бабочки, достаточно для того, чтобы привлечь сотни самцов с расстояния в десятки километров. При этом незначительные изменения в структуре феромона (положение или стереоизомерия двойной С=С связи, использование другого стереоизомера хиральной молекулы и т.д.) может привести к привлечению насекомых совсем другого вида или к отпугиванию особей своего вида.
Известно, что самки оливковой мухи Bacroceraoleae привлекают самцов с помощью соединения А , а самцы самок – с помощью соединения Б . При обработке этих соединений разбавленным раствором кислоты образуется одно и то же вещество В , про которое известно следующее:
а) оно содержит 27.6% кислорода и 62.1% углерода, а при обработке пентабромидом фосфора превращается в соединение Г, содержащее 71.75% брома;
б) при нагревании в присутствии каталитических количеств пара -толуолсульфокислоты (TsOH) легко превращается в смесь соединений А и Б ;
в) в результате осуществления цепочки превращений:

его можно трансформировать в соединение З , которое при взаимодействии с одним эквивалентом реактива Гриньяра образует смесь двух спиртов.
Определите возможные структуры соединений А – З и напишите уравнения приведенных здесь реакций

Задача 3.

Иммобилизованные ферменты

Ферменты - это биологические катализаторы белковой природы. Для использования ферментов в различных биотехнологических процессах нередко необходимо закрепить (иммобилизовать) фермент на подходящем нерастворимом носителе (исходный фермент, который подвергают иммобилизации, мы будем называть нативным ферментом).
А. Получение иммобилизованных ферментов.
Для иммобилизации ферментов обычно используют носители, содержащие амино-, гидроксильные или карбоксильные группы, которые не отличаются высокой реакционной способностью при физиологических условиях. Поэтому при образовании ковалентной связи фермент-носитель, последний необходимо сначала активировать. Одним из типов активирующих реагентов являются диальдегиды, например, янтарный

OHC-(CH 2) 2 -CHO.

1. Напишите реакции, происходящие при действии янтарного альдегида на поливиниловый спирт в кислой среде. Для обозначения носителя здесь и далее используйте следующий значок:

2. Напишите уравнение побочной реакции между поливиниловым спиртом и янтарным альдегидом, которая снижает выход фермента, ковалентно связанного с носителем.
3. Напишите реакцию взаимодействия носителя, активированного янтарным альдегидом, с ферментом (рН = 8). В схеме укажите функциональную группу фермента, которая будет вступать во взаимодействие. Для обозначения фермента используйте значок:

4. По боковым группам остатков каких аминокислот будет протекать реакция? Приведите тривиальные названия и формулы боковых радикалов данных аминокислот.
5. Какая еще группа фермента, помимо указанных в ответе на вопрос 4, может вступать во взаимодействие с активированным носителем?
6. Укажите области рН, в которых образующаяся связь фермент-носитель:
а) стабильна
б) нестабильна
Для повышения устойчивости связи фермент-носитель систему, получившуюся в результате реакции, описанной в вопросе 1, обрабатывают боргидридом натрия.
7. Приведите схему данной реакции. где V max = k 2 [E] 0 и K M = (k 2 + k -1)/ k 1

Иммобилизация может влиять на значения как каталитической константы k 2 , так и константы Михаэлиса K M , которая характеризует эффективность связывания фермента с данным субстратом. Катализ иммобилизованными ферментами может протекать в двух режимах:
кинетическом, при котором наблюдаемая скорость определяется каталитическими свойствами самого фермента;
диффузионном, при котором наблюдаемая скорость реакции контролируется диффузией (то есть, определяется скоростью подачи субстрата к ферменту).

Рассмотрим систему с иммобилизованным ферментом, в которой смена режима наблюдается при концентрации субстрата, равной [S] 0,экс.
8. Изобразите на графике в так называемых двойных обратных координатах (1/v от 1/[S] 0) вид зависимости для данной системы в интервале концентраций субстрата от [S] 0,экс /2 до 10[S] 0,экс. Отметьте на оси абсцисс точки, соответствующие концентрациям субстрата [S] 0,экс /2, [S] 0,экс и 10[S] 0,экс. Зависимость, соответствующую кинетическому режиму, отметьте цифрой "1", а диффузионному режиму – цифрой "2".
9. Укажите, чему равны длины отрезков, отсекаемых на оси абсцисс и оси ординат в двойных обратных координатах продолжением зависимости для случая кинетического режима (график из ответа на вопрос 8). Приведите вычисления.
Иммобилизация на полиэлектролитных носителях может влиять на распределение в системе протонов, что приводит к изменению зависимости каталитической активности фермента (и, следовательно, скорости реакции) от рН (в дальнейшем такую зависимость мы будем называть рН-профилем). Пусть для некоторого нативного фермента рН-профиль имеет классический колоколообразный вид (см. ниже).

10. Представьте в координатах (v от рН) рН-профили, соответствующие нативному ферменту (обозначьте каждую ветвь цифрой 1), тому же ферменту, иммобилизованному на полианионном носителе (обозначьте каждую ветвь цифрой 2), и тому же ферменту, иммобилизованному на поликатионном носителе (обозначьте каждую ветвь цифрой 3). Допустите, что иммобилизация не влияет:
а) на величину скорости ферментативной реакции в рН-оптимуме (наивысшая точка колокола);
б) на форму рН-профиля.

Реакции озона с различными ароматическими соединениями в интервале температур (-40) – (-20)°С по скорости реакции подчиняются бимолекулярному закону. Энергия активации реакции для бензола равна 50 кДж/моль, а скорость процесса сильно возрастает с увеличением полярности среды или в присутствии кислых катализаторов.

Приведем данные о некоторых кинетических параметрах реакции озона с ароматическими углеводородами в CCl4 при t = 20°C и начальной концентрации озона О3 = 10-4¸10-6 моль/л, соответственно, стехиометрический коэффициент; константа скорости - k, л/моль×с; для: бензола - 3; 6 ×10-2; нафталина - 2; 2,4; фенантрена - 1; 0,8×102; пирена - 2; 0,8×102; полинафталина - 1,6×103; антрацена - 3; 5×103 (первая стадия) и 43 (вторая стадия). После присоединения первой молекулы озона происходит нарушение сопряжения у бензола и нафталина и следующие акты реакции протекают намного легче. Сопоставление констант скоростей реакций различных соединений с озоном показывает, что ароматические соединения реагируют значительно медленнее, чем олефины, причём константы скорости реакции увеличиваются в ряду: бензол < нафталин < фенантрен < пирен < антрацен. Озониды бензола и нафталина - вступают в характерные реакции с HI, NaOH, NH2OH·HCl, подвергаются термическому разложению с образованием пары: альдегид + кислота, а также способны к образованию полимеров.

Оценку возможного индукционного влияния ранее присоединившегося озона на направление реакций соседней C=C-связи можно рассмотреть на основании состава продуктов разложения метоксигидроперекисей нафталина: при нагревании промежуточные продукты соответственно превращаются в метиловый эфир полуальдегида фталевой кислоты и диметилфталат, причем в смеси промежуточных продуктов содержится до 80 %. Таким образом, индукционное влияние озонидного цикла, образовавшегося в предыдущем акте реакции, проявляется в предпочтительном образовании биполярного иона у углеродного атома, наиболее удалённого от места присоединения первой молекулы озона.


Реакции озона без затрагивания ароматического ядра основаны на известном положении, что в процессах окисления или при атаках свободными радикалами в реакцию легче вступают заместители, чем ароматическое ядро. Например, константы скорости для замещённых бензолов в ряду заместителей CH3 < CH3-CH2 < (CH3)2 CH - растут симбатно с увеличением числа реакционноспособных атомов водорода в заместителе и уменьшением прочности C-H связи.

Замещённые алкилароматические соединения могут реагировать с озоном двояким образом: с образованием гидроперекисей по цепному механизму окисления и с образованием озонидов. Причём преобладающим является первое направление, а не второе. Протекание реакции по радикальному механизму подтверждается интенсивной хемилюминисценцией, возникающей при пропускании озона через алкилбензолы, обусловленной взаимодействием перекисных радикалов друг с другом.

При действии озона на антрацен основным продуктом реакции является антрахинон, количество которого колеблется в пределах 20÷80 %, причём выход антрахинона зависит от природы растворителя, возрастая в уксусной кислоте и падая в CCl4. Вторым продуктом (с выходом 18÷67 %) является фталевая кислота - C6H5(COOH)2, а выход 4,3-нафталиндикарбонной кислоты - C12H10(COOH)2 составляет (6÷8) %. Известно , что антрацен легко окисляется кислородом, образуя антрахинон с высоким выходом. Процессы такого же типа наблюдаются при окислении поликарбонатов и алкилароматических углеводородов озоном.

Таким образом, в реакциях озона с ароматическими углеводородами обнаруживаются два типа присоединения озона к C=C связям ароматического ядра: 1) сохраняются все три кислорода молекулы озона и образуются озониды, имеющие много общего с озонидами олефинов; 2) в молекуле нового соединения сохраняется один атом из трёх.

Реакция озона с ароматическими углеводородами может использоваться в следующих синтезах:

1) получение дифеновой кислоты из фенантрена:

2) получение фталевого диальдегида и фталевой кислоты (а. с. 240700 СССР, 1969, БИ № 13), путём присоединения нафталином первых двух молекул озона из пяти возможных, после чего реакция сильно замедляется:

3) получение глиоксалевой кислоты (а. с. 235759 СССР, 1969, БИ № 6) на базе низшего гомолога - бензола по реакции:

1.6. Реакции взаимодействия озона с аминами, сернистыми и элементорганическими соединениями,

а также полимерами

При реакции озона с аминами, например, третичными, образуются окиси аминов, с высоким выходом (пат. 437566 Англия, 1935), а также нитроксильные радикалы и другие соединения (которые используются в качестве модификаторов и ингибиторов деструкции резин от О3). Схемы реакций взаимодействия О3 с третичными, вторичными и первичными аминами сложны и содержат много параллельно и последовательно протекающих реакций. Например, при реакции озона с трибутиламином в хлороформе выделено более 40 промежуточных и конечных продуктов реакции. Кинетика реакции озона с аминами подчиняется бимолекулярному закону и зависит от природы растворителя.


I. Взаимодействие О3 с третичными аминами представляется следующей схемой :

1) R3N: + О=О+-О–→ R3N+-O-O-O– (происходит присоединение О3 к амину с образованием продукта, по аналогии с реакцией О3 с альдегидами, насыщенными углеводородами с кратными связями);

2) R3N+-O-OO–→ R3N → O + O2; (образование окисей аминов);

3) R2N-(O-O-O-)-C(H2)-RI®R2N=CH-(HO-O-O-)-R®R2N-CHOHRI + O2 (или R2N-CH(-O-O-OH)-RI) (происходит окисление заместителей).

Выход оксидов аминов максимален в растворителях в виде хлорсодержащих углеводородов и спиртов (CCl4, хлороформ, хлористый метилен). Также, понижение температуры реакции (<25 ºС) благоприятно сказывается на выходе оксидов аминов. Использование n-пентана уменьшает выход почти в 10 раз. Например, при озонировании трибутиламина в метаноле образуются (в %): (C4H9)3N → 0÷53; C4H9N=CH-C3H7 → 2; C4H9NCH=0 → 3; C4H9NCH=CHC2H5 → 11; (C4H9)2NH → 9; C4H9NCOC3H7 → 6.

II. Реакция О3 со вторичными аминами приводит к образованию нитроксильных радикалов, которые в зависимости от строения амина могут быть главными продуктами реакции или присутствовать в заметных количествах. Особенно легко образуют нитроксильные радикалы ароматические амины и производные n-фенилендиамина. Например, взаимодействие озона с триацетонамином, получающийся нитроксильный радикал (2,2,6,6-тетрометил-4-оксопиперидоксил), отличается большой стабильностью и сохраняется месяцами при комнатной температуре без заметных изменений. Большинство ароматических аминов являются антиозонантами и используются для защиты резиновых изделий от озонового старения.

Реакцию озона с вторичными аминами можно представить по схеме (действие О3 на ди-трет-бутиламин в пентане, при t = -120 ºС):

III. Основными продуктами взаимодействия озона с первичными аминами являются нитросоединения и аммониевые основания. Их относительное содержание зависит главным образом от природы растворителя. При переходе от углеводородов к хлорсодержащим растворителям выход нитросоединений уменьшается, но зато возрастает выход аммониевых солей, т. е. идет вовлечение молекулы растворителя в реакцию.

Схему взаимодействия О3 с первичным амином можно в общем виде представить уравнением:

C4H9NH2 + O3 → C4H9NO2 + O2.

Образование конечного нитросоединения требует расхода 3 молекул озона. Для сравнения константы скорости реакции озона с аммиаком в водных растворах (k = 39 л/моль) заметно ниже, чем у аминов (например, для анилина – k = 2,5·103 при t = 20 ºC).

Основные стадии реакции трибутилтиомочевины и ее аналогов с озоном можно представить упрощенной схнмой:

Наиболее легко реагируют нитроксильные радикалы. Поглощая 1 моль озона, они превращаются, главным образом, в нитросоединения.

При реакции озона с сернистыми соединениями, например, сульфидами (R-(–S–)n-R), тиомочевинами и тиосемикарбазидами (R-(R)-C=S) реакции протекают главным образом по атому серы. Для проведения реакции с дисульфидами и полисульфидами используют раствор в четыреххлористом углероде. При этом исходные сульфиды довольно легко реагируют с озоном с константой скорости k = 103 л/моль·с, близкой к фенолам и значительно больше скорости окисления группы -СН2- в алкильных заместителях. Основным продуктом первой стадии реакции является сульфооксид (=S=O), который далее может окисляться до сульфона (=S(=O)2), но со значительно меньшей скоростью (в 50÷100 раз). Константы скорости при взаимодействии озона с сульфидами, на примере диметилсульфида (CH3-S-CH3) - 1,5·103 л/моль·с, по сравнению с серой (S8) - 5,5 и этиловым спиртом (CH3CH2OH) - 10. Причем наблюдается уменьшение реакционной способности органических сернистых соединений в ряду: R-S-R, R-(S)2-RS8.

Озон взаимодействует и с элементоорганическими соединениями, например, кремния :

(C2H5)3Si-CH2-CH3+O3 ® (C2H5)3Si-CH-(OO·)-CH3 + OH·®(C2H5)3SiOOH + O=CH-CH3

или по второй реакции: ® (C2H5)3Si-(-O-O-O)-CH2 ® (C2H5)3SiO2 + OOCH2CH3.

При действии озона на полимерные материалы, особенно сильное воздействие происходит на эластомеры, содержащие С=С связи в главной цепи макромолекулы (например, каучуки). При действии О3 на полимеры имеющие насыщенную углеводородную цепь, особенно на их растворы (в CCl4 при t = 20 ºC), наблюдается падение молекулярного веса и накопление кислородсодержащих функциональных групп (кислот, кетонов и перекисей). Наиболее медленно реагируют с озоном полимеры, содержащие фенильные циклы в главной цепи, в то время как полициклические (полинафтилены, полиатрацены) или полимеры с гетероатомами (поликарбонат) вступают в реакцию значительно легче. В ряду полимеров с насыщенной углеводородной цепью скорость реакции возрастает от полиизобутилена к поливинилциклогексану, одновременно наблюдается уменьшение числа разрывов цепи. Самая большая константа скорости у полибутадиена и полиизопрена и у них же наименьшее число разрывов на один акт реакции. Некоторые полимеры нерастворимы в обычных растворителях (например, полиэтилен). Озонирование отличается от схемы термоокислительной деструкции полистирола тем, что низкие температуры и большие скорости образования радикалов создают условия, в которых доля цепных процессов составляет 15÷20 % в балансе реакции, а главная часть продуктов образуется при распаде пероксирадикалов. Кислоты составляют небольшую часть продуктов реакции и могут образовываться как в результате окисления феноксирадикалов или продуктов их превращений, так и в результате разрушения ароматических озонидов. Действие озона на другие полимеры (полиэтилен, поливинилциклогексан) сопровождается образованием перекисных радикалов. Деструкция ненасыщенных полимеров под действием О3 (например, каучуков, резин) происходит аналогично мономерам, т. е. по С=С связям.