Энтропия и энтальпия в химии. В термодинамику

Теплоемкость и ее виды. Удельной теплоемкостью с называют количество теплоты д , которое требуется для изменения температуры единицы количества вещества на один градус: с = д/ъТ, с = dg/dT.

В зависимости от способа измерения единицы количества вещества, характера термодинамического процесса и величины интервала температур различают несколько видов теплоемкостей.

1. В зависимости от единицы количества вещества (1 кг, 1 м 3 , 1 моль) теплоемкость бывает массовой с [Дж/(кг- К)], объемной с" [Дж/(м 3 - К)] и молярной с й [ДжДмоль- К)].

Связь между ними выражается следующей зависимостью:

где р н - плотность при нормальных физических условиях.

Количество теплоты соответственно определяется по формуле

где m - масса газа, кг; У н - объем газа, приведенный к нормальным физическим условиям; п - число молей газа.

2. Теплоемкость зависит от характера процесса и свойств газа. В зависимости от способа подвода теплоты различают теплоемкость при постоянном давлении (изобарную) с р и теплоемкость при постоянном объеме (изохорную) c v . Понятия «теплоемкость при постоянной температуре» и «адиабатная теплоемкость» редко применяются, так как при Т = const с = d^/O = оо, а при dg = 0 с = О/d/ = 0.

Еще в 1842 г. один из основоположников закона сохранения и превращения энергии Р. Ю. Майер установил, что

Физический смысл этой зависимости легко уяснить. Если для нагревания 1 моля (или 1 кг) газа в цилиндре над поршнем на один градус при постоянном объеме, т.е. при закрепленном неподвижно поршне, надо затратить количество теплоты с ю то при постоянном давлении к этому количеству теплоты добавится работа ц/? (или Я), которую будет совершать расширяющийся газ, толкая освобожденный поршень.

Отношение к = c p /c v называют показателем адиабаты. Отметим, что зная к и используя уравнения (1.5), можно определить

3. Поскольку теплоемкость изменяется с температурой, в зависимости от интервала температур различают истинную (с) и среднюю (с т) удельные теплоемкости. Истинной называют теплоемкость, соответствующую бесконечно малому интервалу температур: с = dq/dT, а средней - теплоемкость, соответствующую конечному интервалу изменения температуры: с т = q/(T 2 - Г)).

Зависимость теплоемкости от температуры может быть выражена числовым рядом, основное значение в котором имеют два первых члена:

где a, b, d - постоянные, зависящие от природы газа.

Экспериментально установлено, что величина теплоемкости реальных газов зависит и от давления, влияние которого при высоких температурах, свойственных продуктам сгорания в тепловых двигателях (1000... 2000 °С), незначительно. При расчетах же паровых машин, турбин, преобразователей теплоты пренебрегать влиянием давления на теплоемкость нельзя.

При практических расчетах обычно пользуются табличными данными средних теплоемкостей в интервале температур от 0 до I. В этом случае количество теплоты, потребное на нагрев 1 кг рабочего тела от 0 до /, или до / 2 , будет

Здесь с^ 0 и с? 0 - табличные значения теплоемкостей в интервалах температур (0.../]) и (0.../ 2).

Количество теплоты, потребное для нагрева 1 кг тела от t x до / 2 , определяется как разность:

Энтальпия. В ряде случаев оказывается целесообразным объединение параметров и и pv в общий калорический параметр, называемый энтальпией:

Энтальпия - термодинамическая функция, имеющая смысл полной (внутренней и внешней) энергии системы. Она складывается из внутренней энергии и и упругостной энергии pv, обусловленной наличием внешнего давления окружающей среды р, т.е. pv есть работа, которую надо затратить, чтобы ввести рабочее тело объемом v в среду, имеющую давление р.

Для идеального газа справедливы соотношения:

При р = const можно получить:

Продифференцировав i - и + pv и подставив в дифференциальное уравнение первого закона термодинамики для потока рабочего тела, можно получить

Энтальпия измеряется в тех же единицах, что и теплота, работа и внутренняя энергия (Дж/кг). Поскольку энтальпия, так же как и внутренняя энергия, является функцией состояния, то ее абсолютная величина может быть определена только с точностью до некоторой постоянной, условно выбранной для начала отсчета.

По международному соглашению за начало отсчета энтальпии для воды и водяного пара принята так называемая тройная точка (Т = 273,16 К и р = 0,0006 Па), в которой возможно одновременное существование трех фаз: льда, жидкости и пара. За начало отсчета энтальпии для газов может быть принята температура Т- 0 К.

Второй закон термодинамики. Второй закон термодинамики, как и первый, является опытным законом, основывающимся на многовековых наблюдениях ученых, однако установлен он был только в середине XIX в.

Наблюдения за явлениями природы показывают, что возникновение и развитие самопроизвольно протекающих в ней естественных процессов, работа которых может быть использована для нужд человека, возможно лишь при отсутствии равновесия между участвующей в процессе термодинамической системой и окружающей средой. Эти процессы всегда характеризуются односторонним их протеканием от более высокого потенциала к более низкому (от более высокой температуры к более низкой или от более высокого давления к более низкому). При протекании указанных процессов термодинамическая система стремится к тому, чтобы прийти в равновесие с окружающей средой, характеризуемое равенством давления и температуры системы и окружающей среды.

Из наблюдений за явлениями природы также следует, что для того чтобы заставить процесс протекать в направлении, обратном направлению протекания самопроизвольного процесса, необходимо затратить заимствованную из внешней среды энергию.

Второй закон термодинамики представляет собой обобщение изложенных положений и заключается в следующем.

  • 1. Самопроизвольное протекание естественных процессов возникает и развивается при отсутствии равновесия между участвующей в процессе термодинамической системой и окружающей средой.
  • 2. Самопроизвольно происходящие в природе естественные процессы, работа которых может быть использована человеком, всегда протекают лишь в одном направлении от более высокого потенциала к более низкому.
  • 3. Ход самопроизвольно протекающих процессов происходит в направлении, приводящем к установлению равновесия термодинамической системы с окружающей средой, и по достижении этого равновесия процессы прекращаются.
  • 4. Процесс может протекать в направлении, обратном самопроизвольному процессу, если энергия для этого заимствуется из внешней среды.

Формулировки второго закона термодинамики, данные различными учеными, вылились в форму постулатов, полученных в результате развития положений, высказанных французским ученым Сади Карно.

В частности, постулат немецкого ученого Р. Клаузиуса состоит в том, что теплота не может переходить от холодного тела к теплому без компенсации. Сущность постулата английского ученого В. Томсона заключается в том, что невозможно осуществить цикл теплового двигателя без переноса некоторого количества теплоты от источника теплоты с более высокой температурой к источнику с более низкой температурой.

Эту формулировку следует понимать так: для того чтобы работала периодически действующая машина, необходимо чтобы были минимум два источника теплоты различной температуры; при этом в работу может быть превращена лишь часть теплоты, забираемого из высокотемпературного источника, в то время как другая часть теплоты должна быть передана низкотемпературному источнику. Высокотемпературный источник иногда называют теплоотдатчиком или верхним источником теплоты, а низкотемпературный - тепло- приемником, нижним источником теплоты или холодильником.

Энтропия. В термодинамике пользуются еще одним параметром состояния рабочего тела - энтропией, устанавливающей связь между количеством теплоты и температурой (Р. Клаузиус, 1850). Поясним этот параметр на основе следующих соображений.

Уравнение первого закона термодинамики можно записать в виде

В этом уравнении dq не является полным дифференциалом, поскольку в правую часть уравнения входит член d/, не являющийся полным дифференциалом, так как работа является не параметром состояния газа, а функцией процесса. Вследствие этого уравнение нельзя проинтегрировать в интервале двух произвольно выбранных состояний газа.

Из математики известно, что всякий двучлен можно представить в виде полного дифференциала, если его умножить на так называемый интегрирующий множитель.

При умножении на интегрирующий множитель 1 (где Т - абсолютная температура), приведенное уравнение примет вид

Уравнение (1.6) можно представить в несколько ином виде, а именно:

Выражение (1.7) говорит о том, что dq/T представляет собой полный дифференциал некоторой функции s (т. е. dq/T = ds), являющейся параметром состояния газа, поскольку она зависит только от двух параметров состояния газа и поэтому не зависит от того, каким путем газ из одного состояния перешел в другое. Этот параметр состояния газа в общем случае называют энтропией газа и обозначают буквой S (Дж/К). Энтропию, отнесенную к 1 кг газа, называют удельной энтропией газа и обозначают буквой s [Дж/(кг- К)).

Приведенное ранее уравнение dq = di - vdp также является неполным дифференциальным уравнением, поскольку dq не является полным дифференциалом. Однако и это уравнение при умножении его на интегрирующий множитель 1/7’ может быть приведено к виду полного дифференциального уравнения

Следовательно,

Учитывая, что для идеального газа pv = RT и, следовательно,

уравнение (1.8) для идеального газа может быть преобразовано следующим образом:

После интегрирования оно примет вид

Изменение энтропии в интервале между двумя состояниями газа (7 и 2) выражается уравнением

Из уравнения (1.9) следует, что количество теплоты, участвовавшее в том или ином термодинамическом процессе при изменении рабочего тела от состояния 7 до состояния 2, можно выразить следующим образом:

Этот интеграл можно вычислить, если известна функциональная зависимость между Tns. Пользуясь этой зависимостью, строят кривые в системе координат s- Т, отображающие те или иные термодинамические процессы.

На основании выражения (1.10) можно заключить, что для процесса 1-2 (рис. 1.5) площадь 7- 2-s 2 - s b лежащая под кривой, отображающей этот процесс, выражает количество теплоты, участвующее в этом процессе.

Рис. 1.5.

Для определения численных значений энтропии пользуются началом отсчета при Т = 0 К, для которого i 0 = 0.

Физический смысл энтропии. Энтропию нельзя измерить, ее смысл затруднительно продемонстрировать с помощью наглядных пособий, но можно понять по следующим интерпретациям.

1. Энтропия - мера ценности теплоты, его работоспособности и технологической эффективности. Можно сказать, что для изолированной системы (нагреватель - рабочее тело) As = 0, при получении от нагревателя количества теплоты q u 3| = (ф/Г,) и чем меньше s it т.е. чем выше Т и тем больше совершаемая системой работа.

Повседневный опыт свидетельствует, что чем выше температура теплоносителя при том же количестве теплоты q, т.е. чем меньше энтропия s = (q/T ), тем теплота ценнее, поскольку она может быть использована не только для совершения работы, но и для технологических нужд - выплавки металла, отопления и т.д.

  • 2. Энтропия - мера потери работы вследствие необратимости реальных процессов. Чем больше необратимость процесса в изолированной системе, тем больше возрастает энтропия s 2 » 5, и тем большая доля энергии не превращается в работу, рассеиваясь в окружающую среду.
  • 3. Энтропия - мера беспорядка. Если установить некоторую меру неупорядоченности макросистемы - неупорядоченности расположения и движения частиц D, то можно записать s = к InZ).

Следовательно, возрастание беспорядка означает возрастание энтропии, рассеивание энергии. При подводе теплоты увеличивается хаотичность теплового движения частиц, и энтропия возрастает. В противном случае охлаждение системы при постоянном объеме есть извлечение из нее теплоты, а следовательно, и энтропии. Упорядоченность системы при этом повышается, а энтропия уменьшается. При конденсации газа в жидкость молекулы занимают более определенные положения, упорядоченность их расположения скачкообразно увеличивается, что соответствует скачкообразному уменьшению энтропии. При дальнейшем понижении температуры тепловое движение становится все менее интенсивным, беспорядок - все меньшим, а значит, и все меньшей становится энтропия. Когда жидкость превратится в твердое вещество, молекулы (ионы) образуют правильные кристаллические решетки, т. е. неупорядоченность опять уменьшится, а с нею уменьшится и энтропия и т.д. Такая закономерность позволяет предположить, что при абсолютной температуре, равной нулю, тепловое движение полностью прекратится и в системе установится максимальный порядок, т.е. неупорядоченность и энтропия станут равными нулю. Это предположение согласуется с опытом, но не поддается опытной проверке (так как абсолютная температура, равная нулю, недостижима) и носит название третьего закона термодинамики.

Следовательно

Обратимые и необратимые термодинамические процессы. Для

исследования термодинамических процессов вводят понятия о равновесных (обратимых) процессах.

Состояние рабочего тела, при котором давление и температура, а следовательно, и удельный объем во всех его точках не изменяются без внешнего энергетического воздействия во времени, называется равновесным состоянием.

Последовательное изменение состояния рабочего тела, происходящего в результате энергетического взаимодействия рабочего тела с окружающей средой, называется термодинамическим процессом. Процесс, при осуществлении которого тело последовательно проходит непрерывный ряд состояний равновесия, называется равновесным.

Обратимым процессом называется такой термодинамический процесс, который допускает возможность протекания его через одни и те же равновесные состояния как в прямом, так и в обратном направлениях, а в окружающей среде не остается никаких изменений.

Если указанное условие не выполняется, то процесс оказывается необратимым. Примером необратимого процесса является передача теплоты в паровом котле от газов с температурой 600... 1000°С к пару, имеющему температуру 400...500°С, так как обратная передача теплоты от пара к газам без изменения их температур невозможна.

В чистом виде в природе и технике обратимые процессы не наблюдаются. Однако их изучение имеет большую роль, так как многие реальные процессы близки к обратимым.

Теплоемкость и ее виды. Удельной теплоемкостью с называют количество теплоты q, которое требуется для изменения температуры единицы количества вещества на один градус:

Различают массовую с, объемную с" и мольную теплоемкости, которые имеют размерность: с, Дж/кг · К; с", Дж/нм 3 · К; , Дж/ моль · К. Эти теплоемкости связаны между собой соотношениями

(1.15)

где ν о, ρ о, μ – удельный объем, плотность и молекулярная масса газа при нормальных условиях (ρ о = 1,013 · 10 5 Па, Т о = 273 К).

Теплоемкость зависит от физической природы рабочего тела, температуры, термодинамического процесса.

В технической термодинамике наиболее часто используют изобарную теплоемкость с р (при р = const) и изохорную с ν (при ν = const).

Связь между этими теплоемкостями определяется соотношением Майера для идеального газа:

с р - с ν = R, (1.16)

где R – газовая постоянная, Дж/кг · К.

Зависимостью теплоемкости от температуры часто пренебрегают, и тогда количество теплоты в изобарном и изохорном процессах находится из выражений

Q p = Мс р (Т 2 – Т 1) или q р = с р (Т 2 – Т 1);

Q ν = Мс ν (Т 2 – Т 1) или q ν = с ν (Т 2 – Т 1).

Из выражения первого закона термодинамики (1.13) и соотношения (1.14) можно получить соотношения для определения изменения внутренней энергии Δu и энтальпии Δh, справедливые для всех термодинамических процессов:

dq ν = du; du = c ν dT; Δu = u 2 – u 1 = c ν (Т 2 – Т 1);

dq р = du + рdν = dh; dh = c p dT; Δh = h 2 – h 1 = c p (Т 2 – Т 1).

Поскольку теплоемкость изменяется с температурой, в зависимости от интервала температур различают истинную с и среднюю с ср теплоемкости. Истинная теплоемкость соответствует бесконечно малому интервалу температур, а средняя - конечному интервалу изменения температуры. Значения теплоемкостей основных газов приводятся в справочниках, учебных пособиях в зависимости от температуры .

Энтальпия. Вводится расчетным путем: полное – H = U + pV или удельное значение h = u + pν, энтальпия представляет некоторую энергию, равную сумме внутренней энергии и произведения давления на объем. Единицей измерения энтальпии Н является джоуль (Дж) или h, Дж/кг. Энтальпия является функцией состояния. Так как в изобарном процессе dH = dQ, то можно сказать, что энтальпия – это количество теплоты, подведенное в изобарном процессе.

Энтропия. Единицей измерения энтропии S является Дж/К и удельной s – Дж/ кг·К. Эта функция состояния вводится расчетным путем и имеет полный дифференциал Количество теплоты в термодинамическом процессе

Если представить термодинамический процесс в T-s диаграмме, то площадь под кривой процесса характеризует количество подведенной или отведенной теплоты.

Энтропию нельзя измерить, но по физическому смыслу она является мерой температурной ценности теплоты, ее способности превращения в работу. Можно сказать также, что энтропия характеризует потерю работы вследствие необратимости реальных процессов (при этом энтропия возрастает).

Обычно при расчете термодинамических процессов определяют не абсолютные значения u, h, s, а изменение в процессе Δu, Δh, Δs.

См. также «Физический портал »

Энтальпи́я , также тепловая функция и теплосодержание - термодинамический потенциал , характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления , энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня площадью S с грузом весом Р = pS , уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной .

Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом E пот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния

Примеры

Неорганические соединения (при 25 °C)
стандартная энтальпия реакции
Хим соединение Фаза (вещества) Химическая формула Δ H f 0 кДж/моль
Аммиак сольватированный NH 3 (NH 4 OH) −80.8
Аммиак газообразный NH 3 −46.1
Карбонат натрия твёрдый Na 2 CO 3 −1131
Хлорид натрия (соль) сольватированный NaCl −407
Хлорид натрия (соль) твёрдый NaCl −411.12
Хлорид натрия (соль) жидкий NaCl −385.92
Хлорид натрия (соль) газообразный NaCl −181.42
Гидроксид натрия сольватированный NaOH −469.6
Гидроксид натрия твёрдый NaOH −426.7
Нитрат натрия сольватированный NaNO 3 −446.2
Нитрат натрия твёрдый NaNO 3 −424.8
Диоксид серы газообразный SO 2 −297
Серная кислота жидкий H 2 SO 4 −814
Диоксид кремния твёрдый SiO 2 −911
Диоксид азота газообразый NO 2 +33
Монооксид азота газообразный NO +90
Вода жидкий H 2 O −286
Вода газообразный H 2 O −241.8
Диоксид углерода газообразный CO 2 −393.5
Водород газообразный H 2 0
Фтор газообразный F 2 0
Хлор газообразный Cl 2 0
Бром жидкий Br 2 0
Бром газоообразный Br 2 0

Инвариантная энтальпия в релятивистской термодинамике

При построении релятивистской термодинамики (с учетом специальной теории относительности) обычно наиболее удобным подходом является использование так называемой инвариантной энтальпии - для системы, находящейся в некотором сосуде.

При этом подходе температура определяется как лоренц-инвариант . Энтропия - также инвариант. Поскольку стенки влияют на систему, наиболее естественной независимой переменной является давление , в связи с чем в качестве термодинамического потенциала удобно брать именно энтальпию .

Для такой системы «обычная» энтальпия и импульс системы образуют 4-вектор , и за определение инвариантной энтальпии, одинаковой во всех системах отсчёта, берётся инвариантная функция этого 4-вектора:

Основное уравнение релятивистской термодинамики записывается через дифференциал инвариантной энтальпии следующим образом:

Пользуясь этим уравнением, можно решить любой вопрос термодинамики движущихся систем, если известна функция .

См. также

Источники

  1. Болгарский А. В., Мухачев Г. А., Щукин В. К., «Термодинамика и теплопередача» Изд. 2-е, перераб. и доп. М.: «Высшая школа», 1975, 495 с.
  2. Харин А. Н., Катаева Н. А., Харина Л. Т., под ред. проф. Харина А. Н. «Курс химии», М.: «Высшая школа», 1975, 416 с.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Энтальпия" в других словарях:

    Энтальпия - (от греческого enthalpo нагреваю), функция состояния термодинамической системы, изменение которой при постоянном давлении равно количеству теплоты, подведенной к системе, поэтому энтальпия называется часто тепловой функцией или теплосодержанием.… … Иллюстрированный энциклопедический словарь

    - (от греч. enthalpo нагреваю) однозначная функция Н состояния термодинамической системы при независимых параметрах энтропии S и давлении p, связана с внутренней энергией U соотношением Н = U + pV, где V объем системы. При постоянном p изменение… … Большой Энциклопедический словарь

    - (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. В любой системе энтальпия равна сумме внутренней энергии и произведения давления на объем. Измеряют в терминах изменения (обычно увеличения) количества… … Научно-технический энциклопедический словарь

    Теплосодержание Словарь русских синонимов. энтальпия сущ., кол во синонимов: 1 теплосодержание (1) Словарь синонимов ASIS … Словарь синонимов

    ЭНТАЛЬПИЯ - (от греч. enthalpo нагреваю) экосистемы, функциональное состояние экосистемы, определяющее ее теплосодержание. Энтальпия экстенсивное свойство экосистемы. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

    энтальпия - Функция состояния термодинамической системы, равная сумме внутренней энергии и произведения объема на давление. Примечание Энтальпия является характеристической функцией, если энтропия и давление являются независимыми параметрами. [Сборник… … Справочник технического переводчика

    - (от греч. enthalpo нагреваю) (теплосодержание, тепловая функция Гиббса), потенциал термодинамический, характеризующий состояние макроскопич. системы в термодинамич. равновесии при выборе в кач ве основных независимых переменных энтропии S и… … Физическая энциклопедия

Внутренняя энергия, энергия тела, зависящая только от его внутреннего состояния. Понятие Внутренняя энергия объединяет все виды энергии тела, за исключением энергии его движения как целого и потенциальной энергии, которой тело может обладать, если оно находится в поле каких-нибудь сил (например, в поле сил тяготения).

Энтальпия (Н) - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термoдинамическое свoйство вещества, котoрое указывает уровень энергии, сохранённoй в его молекулярнoй структуре.

Это значит, чтo, хотя веществo мoжет oбладать энергией на oсновании темпeратуры и давления, не всю её можно преобразовать в тeплоту. Часть внутрeнней энергии всeгда остаётся в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Дж/кг для удельной энергии.

Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии - имеет вполне определенное значение для каждого состояния: ΔH = H2 − H1

Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра равно нулю, а отсюда ΔU = 0 и ΔH = 0.

Энтропи́я - понятие, впервые возникшее в термодинамике как мера необратимого рассеяния энергии.

Энтропия (S (Дж/К)) связана с числом (W) равновероятных микроскопических состояний, которыми можно реализовать данное макроскопическое состояние системы, уравнением

Где K- коэффициент пропорциональности.

Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла который имеет какие – либо неправильности несколько больше.

С повышением температуры энтропия всегда возрастает, так же возрастает при превращение вещества из кристаллического состояния в жидкое, и в особенности при переходе из жидкого состояния в газообразное.

Энтропия зависит только от состояния системы. Но связь изменения энтропии с теплотой зависит от способа проведения процесса – от его скорости.

Если процесс проходит обратимо и при постоянной температуре:

Изменение S = Q(обр)/T. Q(обр)- кол-во теплоты, T- абсолютная температура.

При работе с какими-либо расчётами, вычислениями и выполнении прогноза разнообразных явлений, связанных с теплотехникой, каждый сталкивается с понятием энтальпия. Но для людей, специальность которых не касается теплоэнергетики или которые лишь поверхностно сталкиваются с подобными терминами, слово «энтальпия» будет наводить страх и ужас. Итак, давайте разберёмся, действительно ли всё так страшно и непонятно?

Если попытаться сказать совсем просто, под термином энтальпия понимается энергия, которая доступна для преобразования в теплоту при некотором постоянном давлении. Понятие энтальпия в переводе с греческого значит «нагреваю». То есть формулу, содержащую элементарную сумму внутренней энергии и произведенную работу, называют энтальпией. Эта величина обозначается буквой i.

Если записать вышесказанное физическими величинами, преобразовать и вывести формулу, то получится i = u + pv (где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии). Энтальпия - аддитивная функция, т. е. энтальпия всей системы равна сумме всех составляющих её частей.

Термин «энтальпия» сложен и многогранен.

Но если постараться в нём разобраться, то всё пойдёт очень просто и понятно.

  • Во-первых, чтобы понять, что же такое энтальпия, стоит узнать общее определение, что мы и сделали.
  • Во-вторых, стоит найти мпеханизм появления этой физической единицы, понять, откуда она взялась.
  • В-третьих, нужно найти связь с другими физическими единицами, которые неразрывно с ними взаимосвязаны.
  • И, наконец, в-четвёртых, нужно посмотреть примеры и формулу.

Ну, что же, механизм работы понятен. Вам лишь нужно внимательно читать и вникать. С термином «Энтальпии» мы уже разобрались, также привели и его формулу. Но тут же возникает ещё один вопрос: откуда взялась эта формула и почему энтропия связана, к примеру, с внутренней энергией и давлением?

Суть и смысл

Для того, чтобы попытаться выяснить физический смысл понятия «энтальпия» нужно знать первый закон термодинамики:

энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в одинаковых количествах. Таким примером может служить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Уравнение первого закона термодинамики нам нужно преобразить в вид dq = du + pdv = du + pdv + vdp – vdp = d(u + pv) – vdp. Отсюда мы видим выражение (u + pv). Именно это выражение и называется энтальпией (полная формула приводилась выше).

Энтальпия также является величиной состояния, потому что составляющие u (напряжение) и p (давление), v (удельный объём) имеют для каждой величины определенные значения. Зная это, первый закон термодинамики возможно переписать в виде: dq = di – vdp.

В технической термодинамике используются значения энтальпии, которые высчитываются от условно принятого нуля. Все абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от О к К.

Формулу и значения энтальпии привёл в 1909 г. учёный Г.Камерлинг-Оннесом.

В выражении i — удельная энтальпия, для всей массы тела полная энтальпия обозначается буквой I, по всемирной системе единиц энтальпия измеряется в Джоулях на килограмм и рассчитывается как:

Функции

Энтальпия («Э») является одной из вспомогательных функций, благодаря использованию которой можно значительно упростить термодинамический расчёт. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах или камере сгорания газовых турбин и реактивных двигателей, а также в теплообменных аппаратах) осуществляют при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводят значения энтальпии.

Условие сохранения энтальпии лежит, в частности, в основе теории Джоуля - Томсона. Или эффекта, нашедшего важное практическое применение при сжижении газов. Таким образом, энтальпия есть полная энергия расширенной системы, представляющая сумму внутренней энергии и внешней – потенциальной энергии давления. Как любой параметр состояния, энтальпия может быть определена любой парой независимых параметров состояния.

Также, исходя из приведённых выше формул, можно сказать: «Э» химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
В общем случае изменение энергии термодинамической системы не является необходимым условием для изменения энтропии этой системы.

Итак, вот мы и разобрали понятие «энтальпии». Стоит отметить, что «Э» неразрывно связана с энтропией, о которой вы также можете прочесть позже.