Как построить график функции синус x. Урок математики

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").

Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).


Свойства функции
y = sin x :

3) Это нечетная функция.

4) Это непрерывная функция.


- с осью абсцисс: (πn; 0),
- с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках функция принимает положительные значения.
На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
Точки максимума функции: π/2 + 2πn


наибольшее значение 1.

Для построения графика функции y = sin x удобно применять следующие масштабы:

На листе в клетку за единицу отрезка примем длину в две клетки.

На оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x .

На оси y отметим 1, включающий две клетки.

Составим таблицу значений функции, применяя наши значения x :

√3
-
2

√3
-
2

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке . Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

Функция y = cos x .

Графиком функции является синусоида (ее иногда называют косинусоидой).



Свойства функции y = cos x :

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
- с осью абсцисс: (π/2 + πn; 0),
- с осью ординат: (0;1).

6) На отрезке функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
Промежутки убывания: ;

9) Точки минимума функции: π + 2πn.
Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Функция y = mf (x ).

Возьмем предыдущую функцию y = cos x . Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m < 1, то синусоида сжимается к оси x на коэффициент m. Если m > 1, то синусоида растягивается от оси x на коэффициент m.

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

Функция y = f (kx ).

Если функция y = mf (x ) приводит к растяжению синусоиды от оси x либо сжатию к оси x , то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y .

Причем k – любое действительное число.

При 0 < k < 1 синусоида растягивается от оси y на коэффициент k. Если k > 1, то синусоида сжимается к оси y на коэффициент k.

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

Функция y = tg x .

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.


Свойства функции y = tg x :

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).



Свойства функции y = ctg x :

Урок и презентация на тему: "Функция y=sin(x). Определения и свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:

  • Свойства функции Y=sin(X).
  • График функции.
  • Как строить график и его масштаб.
  • Примеры.

Свойства синуса. Y=sin(X)

Ребята, мы уже познакомились с тригонометрическими функциями числового аргумента. Вы помните их?

Давайте познакомимся поближе с функцией Y=sin(X)

Запишем некоторые свойства этой функции:
1) Область определения – множество действительных чисел.
2) Функция нечетная. Давайте вспомним определение нечетной функции. Функция называется нечетной если выполняется равенство: y(-x)=-y(x). Как мы помним из формул привидения: sin(-x)=-sin(x). Определение выполнилось, значит Y=sin(X) – нечетная функция.
3) Функция Y=sin(X) возрастает на отрезке и убывает на отрезке [π/2; π]. Когда мы движемся по первой четверти (против часовой стрелки), ордината увеличивается, а при движении по второй четверти она уменьшается.

4) Функция Y=sin(X) ограничена снизу и сверху. Данное свойство следует из того, что
-1 ≤ sin(X) ≤ 1
5) Наименьшее значение функции равно -1 (при х = - π/2+ πk). Наибольшее значение функции равно 1 (при х = π/2+ πk).

Давайте, воспользовавшись свойствами 1-5, построим график функции Y=sin(X). Будем строить наш график последовательно, применяя наши свойства. Начнем строить график на отрезке .

Особое внимание стоит обратить на масштаб. На оси ординат удобнее принять единичный отрезок равный 2 клеточкам, а на оси абсцисс - единичный отрезок (две клеточки) принять равным π/3 (смотрите рисунок).


Построение графика функции синус х, y=sin(x)

Посчитаем значения функции на нашем отрезке:



Построим график по нашим точкам, с учетом третьего свойства.

Таблица преобразований для формул привидения

Воспользуемся вторым свойством, которое говорит, что наша функция нечетная, а это значит, что ее можно отразить симметрично относительно начало координат:


Мы знаем, что sin(x+ 2π) = sin(x). Это значит, что на отрезке [- π; π] график выглядит так же, как на отрезке [π; 3π] или или [-3π; - π] и так далее. Нам остается аккуратно перерисовать график на предыдущем рисунке на всю ось абсцисс.



График функции Y=sin(X) называют - синусоидой.


Напишем еще несколько свойств согласно построенному графику:
6) Функция Y=sin(X) возрастает на любом отрезке вида: [- π/2+ 2πk; π/2+ 2πk], k – целое число и убывает на любом отрезке вида: [π/2+ 2πk; 3π/2+ 2πk], k – целое число.
7) Функция Y=sin(X) – непрерывная функция. Посмотрим на график функции и убедимся что у нашей функции нет разрывов, это и означает непрерывность.
8) Область значений: отрезок [- 1; 1]. Это также хорошо видно из графика функции.
9) Функция Y=sin(X) - периодическая функция. Посмотрим опять на график и увидим, что функция принимает одни и те же значения, через некоторые промежутки.

Примеры задач с синусом

1. Решить уравнение sin(x)= x-π

Решение: Построим 2 графика функции: y=sin(x) и y=x-π (см. рисунок).
Наши графики пересекаются в одной точке А(π;0), это и есть ответ: x = π




2. Построить график функции y=sin(π/6+x)-1

Решение: Искомый график получится путем переноса графика функции y=sin(x) на π/6 единиц влево и 1 единицу вниз.




Решение: Построим график функции и рассмотрим наш отрезок [π/2; 5π/4].
На графике функции видно, что наибольшие и наименьшие значения достигаются на концах отрезка, в точках π/2 и 5π/4 соответственно.
Ответ: sin(π/2) = 1 – наибольшее значение, sin(5π/4) = наименьшее значение.



Задачи на синус для самостоятельного решения


  • Решите уравнение: sin(x)= x+3π, sin(x)= x-5π
  • Построить график функции y=sin(π/3+x)-2
  • Построить график функции y=sin(-2π/3+x)+1
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке [- π/3; 5π/6]

Геометрическое определение синуса и косинуса

\(\sin \alpha = \dfrac{|BC|}{|AB|} \) , \(\cos \alpha = \dfrac{|AC|}{|AB|} \)

α - угол, выраженный в радианах.

Синус (sin α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AB|.

Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла - это абсцисса точки. Синус угла - это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол. На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Нулевой угол \(\LARGE 0^{\circ } \)

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

cos 0 = 1 sin 0 = 0

Рис 4. Нулевой угол

Угол \(\LARGE \frac{\pi}{6} = 30^{\circ } \)

Мы видим прямоугольный треугольник с единичной гипотенузой и острым углом 30° . Как известно, катет, лежащий напротив угла 30° , равен половине гипотенузы 1 ; иными словами, вертикальный катет равен 1/2 и, стало быть,

\[ \sin \frac{\pi}{6} =\frac{1}{2} \]

Горизонтальный катет находим по теореме Пифагора (или, что то же самое, находим косинус по основному тригонометрическому тождеству):

\[ \cos \frac{\pi}{6} = \sqrt{1 - \left(\frac{1}{2} \right)^{2} } =\frac{\sqrt{3} }{2} \]

1 Почему так получается? Разрежьте равносторонний треугольник со стороной 2 вдоль его высоты! Он распадётся на два прямоугольных треугольника с гипотенузой 2, острым углом 30° и меньшим катетом 1.

Рис 5. Угол π / 6

Угол \(\LARGE \frac{\pi}{4} = 45^{\circ } \)

В данном случае прямоугольный треугольник является равнобедренным; синус и косинус угла 45° равны друг другу. Обозначим их пока через x . Имеем:

\[ x^{2} + x^{2} = 1 \]

откуда \(x=\frac{\sqrt{2} }{2} \). Следовательно,

\[ \cos \frac{\pi}{4} = \sin \frac{\pi}{4} =\frac{\sqrt{2} }{2} \]

Рис 5. Угол π / 4

Свойства синуса и косинуса

Принятые обозначения

\(\sin^2 x \equiv (\sin x)^2; \) \(\quad \sin^3 x \equiv (\sin x)^3; \) \(\quad \sin^n x \equiv (\sin x)^n \) \(\sin^{-1} x \equiv \arcsin x \) \((\sin x)^{-1} \equiv \dfrac1{\sin x} \equiv \cosec x \) .

\(\cos^2 x \equiv (\cos x)^2; \) \(\quad \cos^3 x \equiv (\cos x)^3; \) \(\quad \cos^n x \equiv (\cos x)^n \) \(\cos^{-1} x \equiv \arccos x \) \((\cos x)^{-1} \equiv \dfrac1{\cos x} \equiv \sec x \) .

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2π.

\(\sin(x + 2\pi) = \sin x; \quad \) \(\cos(x + 2\pi) = \cos x \)

Четность

Функция синус – нечетная. Функция косинус – четная.

\(\sin(-x) = - \sin x; \quad \) \(\cos(-x) = \cos x \)

Области определения и значений, экстремумы, возрастание, убывание

Основные свойства синуса и косинуса представлены в таблице (n - целое).

\(\small < x < \) \(\small -\pi + 2\pi n \) \(\small < x < \) \(\small 2\pi n \)
Убывание \(\small \dfrac{\pi}2 + 2\pi n \) \(\small < x < \) \(\small \dfrac{3\pi}2 + 2\pi n \) \(\small 2\pi n \) \(\small < x < \) \(\pi + \small 2\pi n \)
Максимумы, \(\small x = \) \(\small \dfrac{\pi}2 + 2\pi n \) \(\small x = 2\pi n \)
Минимумы, \(\small x = \) \(\small -\dfrac{\pi}2 + 2\pi n \) \(\small x = \) \(\small \pi + 2\pi n \)
Нули, \(\small x = \pi n \) \(\small x = \dfrac{\pi}2 + \pi n \)
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы, содержащие синус и косинус

Сумма квадратов

\(\sin^2 x + \cos^2 x = 1 \)

Формулы синуса и косинуса суммы и разности

\(\sin(x + y) = \sin x \cos y + \cos x \sin y \)
\(\sin(x - y) = \sin x \cos y - \cos x \sin y \)
\(\cos(x + y) = \cos x \cos y - \sin x \sin y \)
\(\cos(x - y) = \cos x \cos y + \sin x \sin y \)

\(\sin(2x) = 2 \sin x \cos x \)
\(\cos(2x) = \cos^2 x - \sin^2 x = \) \(2 \cos^2 x - 1 = 1 - 2 \sin^2 x \)
\(\cos\left(\dfrac{\pi}2 - x \right) = \sin x \) ; \(\sin\left(\dfrac{\pi}2 - x \right) = \cos x \)
\(\cos(x + \pi) = - \cos x \) ; \(\sin(x + \pi) = - \sin x \)

Формулы произведения синусов и косинусов

\(\sin x \cos y = \) \(\dfrac12 {\Large [} \sin(x - y) + \sin(x + y) {\Large ]} \)
\(\sin x \sin y = \) \(\dfrac12 {\Large [} \cos(x - y) - \cos(x + y) {\Large ]} \)
\(\cos x \cos y = \) \(\dfrac12 {\Large [} \cos(x - y) + \cos(x + y) {\Large ]} \)

\(\sin x \cos y = \dfrac12 \sin 2x \)
\(\sin^2 x = \dfrac12 {\Large [} 1 - \cos 2x {\Large ]} \)
\(\cos^2 x = \dfrac12 {\Large [} 1 + \cos 2x {\Large ]} \)

Формулы суммы и разности

\(\sin x + \sin y = 2 \, \sin \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\sin x - \sin y = 2 \, \sin \dfrac{x-y}2 \, \cos \dfrac{x+y}2 \)
\(\cos x + \cos y = 2 \, \cos \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\cos x - \cos y = 2 \, \sin \dfrac{x+y}2 \, \sin \dfrac{y-x}2 \)

Выражение синуса через косинус

\(\sin x = \cos\left(\dfrac{\pi}2 - x \right) = \) \(\cos\left(x - \dfrac{\pi}2 \right) = - \cos\left(x + \dfrac{\pi}2 \right) \) \(\sin^2 x = 1 - \cos^2 x \) \(\sin x = \sqrt{1 - \cos^2 x} \) \(\{ 2 \pi n \leqslant x \leqslant \pi + 2 \pi n \} \) \(\sin x = - \sqrt{1 - \cos^2 x} \) \(\{ -\pi + 2 \pi n \leqslant x \leqslant 2 \pi n \} \) .

Выражение косинуса через синус

\(\cos x = \sin\left(\dfrac{\pi}2 - x \right) = \) \(- \sin\left(x - \dfrac{\pi}2 \right) = \sin\left(x + \dfrac{\pi}2 \right) \) \(\cos^2 x = 1 - \sin^2 x \) \(\cos x = \sqrt{1 - \sin^2 x} \) \(\{ -\pi/2 + 2 \pi n \leqslant x \leqslant \pi/2 + 2 \pi n \} \) \(\cos x = - \sqrt{1 - \sin^2 x} \) \(\{ \pi/2 + 2 \pi n \leqslant x \leqslant 3\pi/2 + 2 \pi n \} \) .

Выражение через тангенс

\(\sin^2 x = \dfrac{\tg^2 x}{1+\tg^2 x} \) \(\cos^2 x = \dfrac1{1+\tg^2 x} \) .

При \(- \dfrac{\pi}2 + 2 \pi n < x < \dfrac{\pi}2 + 2 \pi n \) \(\sin x = \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = \dfrac1{ \sqrt{1+\tg^2 x} } \) .

При \(\dfrac{\pi}2 + 2 \pi n < x < \dfrac{3\pi}2 + 2 \pi n \) :
\(\sin x = - \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = - \dfrac1{ \sqrt{1+\tg^2 x} } \) .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.
[ img style="max-width:500px;max-height:1080px;" src="tablitsa.png" alt="Таблица синусов и косинусов" title="Таблица синусов и косинусов" ]

Выражения через комплексные переменные

\(i^2 = -1 \)
\(\sin z = \dfrac{e^{iz} - e^{-iz}}{2i} \) \(\cos z = \dfrac{e^{iz} + e^{-iz}}{2} \)

Формула Эйлера

\(e^{iz} = \cos z + i \sin z \)

Выражения через гиперболические функции

\(\sin iz = i \sh z \) \(\cos iz = \ch z \)
\(\sh iz = i \sin z \) \(\ch iz = \cos z \)

Производные

\((\sin x)" = \cos x \) \((\cos x)" = - \sin x \) . Вывод формул > > >

Производные n-го порядка:
\(\left(\sin x \right)^{(n)} = \sin\left(x + n\dfrac{\pi}2 \right) \) \(\left(\cos x \right)^{(n)} = \cos\left(x + n\dfrac{\pi}2 \right) \) .

Интегралы

\(\int \sin x \, dx = - \cos x + C \) \(\int \cos x \, dx = \sin x + C \)
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

\(\sin x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n+1} }{ (2n+1)! } = \) \(x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + ... \) \(\{- \infty < x < \infty \} \)
\(\cos x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n} }{ (2n)! } = \) \(1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + ... \) \(\{ - \infty < x < \infty \} \)

Секанс, косеканс

\(\sec x = \dfrac1{ \cos x } ; \) \(\cosec x = \dfrac1{ \sin x } \)

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

\(y = \arcsin x \) \(\left\{ -1 \leqslant x \leqslant 1; \; - \dfrac{\pi}2 \leqslant y \leqslant \dfrac{\pi}2 \right\} \)
\(\sin(\arcsin x) = x \)
\(\arcsin(\sin x) = x \) \(\left\{ - \dfrac{\pi}2 \leqslant x \leqslant \dfrac{\pi}2 \right\} \)

Арккосинус, arccos

\(y = \arccos x \) \(\left\{ -1 \leqslant x \leqslant 1; \; 0 \leqslant y \leqslant \pi \right\} \)
\(\cos(\arccos x) = x \) \(\{ -1 \leqslant x \leqslant 1 \} \)
\(\arccos(\cos x) = x \) \(\{ 0 \leqslant x \leqslant \pi \} \)

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Функции у= sin x и y = cos x и их графики (сопровождающая презентация к уроку) КОРПУСОВА ТАТЬЯНА СЕРГЕЕВНА учитель математики МБОУ ЛСОШ № 2 им. Н.Ф.Струченкова Брянская обл.

ОПРЕДЕЛЕНИЕ Числовые функции, заданные формулами у= sin x и y = cos x , называют соответственно синусом и косинусом. 10.11.2013 КОРПУСОВА Т.С.

Функция y=sin x , график и свойства. 10.11.2013 КОРПУСОВА Т.С.

Синусоида у 1 - π/2 π 2 π 3 π х -3 π/2 - π 0 π/2 3 π/2 5 π/2 -1 10.11.2013 КОРПУСОВА Т.С.

у = sin(x+a) ПРИМЕР y 1 -1 π 2 π - π 10.11.2013 КОРПУСОВА Т.С.

у = sin x + a 1) y = sin x + 1 ; y 1 x - π 0 π 2 π x -1 x 2) y = sin x - 1 10.11.2013 КОРПУСОВА Т.С.

Построение графиков y=sin(x+m)+l y 1 - π 0 π 2 π 3 π x -1 10.11.2013 КОРПУСОВА Т.С.

Функция y = cos x , её свойства и график. 10.11.2013 КОРПУСОВА Т.С.

y = cos x у 1 - π/2 π 2 π 3 π х - π 0 π/2 3 π/2 5 π/2 -1 График функции у= cos x получен при смещении синусоиды влево на π/2 10.11.2013 КОРПУСОВА Т.С.

Построение графиков y = cos (x+m)+l 1)y =- cos x; y 2 y x 0 x -1 2)y= cos (x- π/4)+2 10.11.2013 КОРПУСОВА Т.С.

Построение графиков y=k · sin x y 2,5 1 x -1 -2,5 10.11.2013 КОРПУСОВА Т.С.

Нахождение периода тригонометрических функций Если y=f(x) периодическая и имеет наименьший положительный период Т₁, то функция y=A· f(kx+b), где А, k и b постоянные, а k ≠ 0 , также периодична с периодом Примеры: 10.11.2013 КОРПУСОВА Т.С. 1) y=sin 6 x +2, Т₁=2 π T₁=2 π

Построение графиков периодических функций 10.11.2013 КОРПУСОВА Т.С. y x 1 1 y x 1 1 1)T= 4 2)T= 4 Дана функция у= f(x) . Построить её график, если известен период. y x 1 1 3)T= 3

Построить график функции: y=2cos(2x- π/3)-0,5 и найти область определения и область значений функции 10.11.2013 КОРПУСОВА Т.С. у х 1 -1 π - π 2 π -2 π T= π