Кондуктивный теплообмен в плоской стенке. Кондуктивный теплообмен

Среди процессов сложного теплообмена различают радиацион-но-конвективный и радиационно-кондуктивный теплообмен.

деляется их суммой. Радиационно-кондуктивный теплообмен в плоском слое для других исходных условий рассмотрен в [Л. 5, 117, 163]; для цилиндрического слоя - в [Л. 116].

Так почему же в области, классифицируемой как кипящие слои крупных частиц, с ростом диаметра увеличиваются и максимальные коэффициенты теплообмена? Все дело в газоконвективном теплообмене. В слоях мелких частиц скорости фильтрации газа слишком малы, чтобы конвективная составляющая теплообмена могла себя «проявить». Но с увеличением диаметра зерен она возрастает. Несмотря на низкий кондуктивный теплообмен, в кипящем слое крупных частиц рост конвективной составляющей компенсирует этот недостаток.

Глава четырнадцатая Радиационно-кондуктивный теплообмен

14-2. Радиационно-кондуктивный теплообмен в плоском слое серой поглощающей среды без источников тепла

14-3. Радиационно-кондуктивный теплообмен в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла

Таким образом, на основании перечисленных и некоторых других, более частных работ становится очевидным, что радиационно-кондуктивный теплообмен в системах, содержащих объемные источники тапла, изучен явно недостаточно. В частности, не выяснено влияние селективности среды и граничных поверхностей, влияние анизотропии объемного и поверхностного рассеяния. В связи с этим автором было предпринято приближенное аналитическое решение задачи радиационно-коядуктивного теплообмена в плоском слоесре-

тнвный и конвективный переносы тепла. Частными случаями этого гаида теплообмена.являются: радиационный теплообмен в движущейся среде (при отсутствии кон-дуктивного переноса), радиационно-кондуктивный теплообмен в неподвижной среде (при отсутствии конвективного (переноса) и чисто "конвективный теплообмен в движущейся среде, когда радиационный перенос отсутствует. Полная система уравнений, описывающих процессы радиационно-конвективного теплообмена, была рассмотрена и проанализирована IB гл. 12.

В уравнении (15-1) суммарный коэффициент теплоотдачи от потока к стенке канала может быть найден на основании (14-14) и (14-15). С этой целью рассмотрим в рамках принятой схемы процесс теплообмена текущей среды с граничной поверхностью как радиацион-но-кондуктивный теплообмен ядра потока и стенки канала через пограничный слой толщиной б. Приравняем температуру ядра потока средней калориметрической температуре среды в данном сечении, что можно сделать, учитывая малую толщину "пограничного слоя по сравнению с диаметром канала. Считая в качестве одной из граничных поверхностей ядро потока [с температурой в данном сечении канала Т(х) и поглощательной способностью аг], а в качестве другой - "стенку канала (с температурой Tw и поглощательной способностью aw), рассмотрим процесс радиационно-кондуктивного теплообмена через пограничный слой. Применяя (14-14), получаем выражение для локального коэффициента теплоотдачи а в данном сечении:Задачи радиационно-конвективного теплообмена даже для простых случаев обычно более трудны, чем задача радиационно-кондуктивного теплообмена. Ниже приведено приближенное решение [Л. 205] одной распространенной задачи радиационно-конвективного теплообмена. Существенные упрощения позволяют довести решение до конца.

Как показано в [Л. 88, 350], тензорное приближение при определенных условиях является более точным методом, открывающим новые возможности при исследовании процессов теплообмена излучением. В (Л. 351] предложенное тензорное приближение {Л. 88, 350] было использовано для решения комбинированной задачи радиа-ционно-кондуктивного теплообмена и дало хорошие результаты. В дальнейшем автором тензорное приближение было обобщено «а случай спектрального и полного излучения при произвольных индикатрисах объемного и поверхностного рассеяния в излучающих системах [Л. 29, 89].

Применяя итерационный способ решения задач сложного теплообмена, следует вначале задаться величинами Qpea.i по всем зонам и определить на электроинтеграторе описанного типа получающееся для принятого распределения Qpea.i (i=l 2,..., п) температурное поле, на основании которого вычисляется второе приближение всех величин
Радиационно-кондуктивный теплообмен рассматривается применительно к плоскому слою ослабляющей среды. Решены две задачи. Первая - аналитическое рассмотрение радиационно-кондуктивного теплообмена в плоском слое среды без каких-либо ограничений в от-"ношении температур поверхностей слоя. При этом среда и граничные поверхности предполагались серыми, а внутренние источники тепла в среде отсутствовали. Второе решение относится к симметричной задаче радиационно-кондуктивного теплообмена в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла внутри слоя. Результаты решения первой задачи

Как частные случаи из системы уравнений сложного теплообмена вытекают все отдельные уравнения, рассматриваемые в гидродинамике и теории теплообмена: уравнения движения и неразрывности среды, уравнения чисто кондуктивного, конвективного и радиационного теплообмена, уравнения радиационно-кондуктивного теплообмена в неподвижной среде и, наконец, уравнения радиационного теплообмена в движущейся, но нетепло-про-зодной среде.

Радиационно-кондуктивный теплообмен, являющийся одним ш видов сложного теплообмена, имеет место в различных областях науки и темники (астро- и геофизика, металлургическая и стекольная промышленность, электровакуумная технология, .производство новых материалов и пр.). К необходимости изучения процессов радиационно-кондуктивного теплообмена приводят также задачи переноса энергии в пограничных слоях потоков жидких и газообразных сред и проблемы исследования теплопроводности различных полупрозрачных материалов.

но рассчитать процесс радиационио-"кондуктивного теплообмена IB тех условиях, для которых справедливы полученные решения. Численные решения задачи дают наглядную.картину исследуемого процесса для (конкретных случаев, не требуя при этом введения многих ограничений, присущих приближенным аналитическим исследованиям. Как аналитические, так и численные решения, несомненно, являются известным (прогрессом в изучении процессов радиационно-тондуктивного теплообмена, несмотря на свой ограниченный и частный характер.

В настоящей главе рассматриваются два выполненных автором аналитических решения задачи радиацион-но-кондуктивного теплообмена в плоском слое среды. Первое решение рассматривает задачу при отсутствии ограничений в отношении температур, поглощательных способностей граничных поверхностей и оптических толщин слоя среды [Л. 89, 203]. Это решение выполнено методом итераций, причем среда и.граничные поверхности предполагаются серыми, а в объеме среды отсутствуют.источники тепла.

Рис. 14-1. Схема к решению задачи ра-диационно-кондуктивного теплообмена в плоском слое поглощающей и теплопроводной среды при отсутствии внутренних источников тепла в среде.

Наиболее детальное аналитическое исследование получила рассмотренная выше задача радиационно-кондуктивного теплообмена через слой серой, чисто поглощающей среды при задании температур серых граничных поверхностей слоя и при отсутствии источников тепла в самой среде. Задача радиационно-кондуктивного теплообмена слоя излучающей и теплопроводной среды с граничными поверхностями при наличии в объеме источников тепла рассматривалась в весьма ограниченном числе работ с принятием тех или иных допущений.

Впервые попытка учета внутренних источников тепла в процессах «радиационно-кондуктивного теплообмена была предпринята в [Л. 208], где рассматривалась задача переноса тепла излучением и теплопроводностью через слой серой, нерассеивающей среды с равномерным распределением источников по объему. Однако математическая ошибка, допущенная в работе, свела на нет полученные результаты.

Тепловые процессы

И аппараты


ТЕПЛООБМЕН

Химические технологические процессы протекают в заданном направлении только при определенных температурах, которые создаются путем подвода или отвода тепловой энергии (теплоты). Процессы, скорость протекания которых зависит от скорости подвода или отвода теплоты, называются тепловыми. Движущей силой тепловых процессов является разность температур между фазами. Аппараты, в которых осуществляются тепловые процессы, называются теплообменниками, в них тепло переносится теплоносителями.

Расчет теплообменных процессов и аппаратов сводится обычно к определению межфазной поверхности теплообмена. Эта поверхность находится из уравнения теплопередачи в интегральной форме. Коэффициент теплопередачи , как известно, зависит от коэффициентов теплоотдачи фаз, а также от термического сопротивления стенки. Ниже будут рассмотрены способы их определения, нахождение поля температур и тепловых потоков. Там, где это возможно, искомые величины находятся из решения уравнений законов сохранения, а в остальных случаях используются упрощенные математические модели или метод физического моделирования.

Кондуктивный теплообмен в плоской стенке

Рассмотрим теплообмен в неподвижной плоской стенке
из однородного материала, теплофизические свойства которого постоянны
(с p , l, r = const) (рис. 1.1).

Рис. 1.1. Распределение температуры в плоской стенке

Общее уравнение нестационарной теплопроводности Фурье имеет вид

(1)

Процесс теплообмена стационарный, тогда . Считаем,
что высота и длина гораздо больше толщины стенки d, следовательно, теплообмен по этим направлениям отсутствует, тогда температура изменяется лишь вдоль одной координаты х , отсюда имеем

Поскольку , имеем

(2)

Очевидным решением этого уравнения является

,

(3)

Граничные условия:

при ;

при

Находим и , , тогда

. (4)

Распределение T по толщине d

. (5)

Из полученного уравнения (5) видно, что в плоской стенке распределение Т является прямолинейным.

Поток тепла за счет теплопроводности определяется по закону Фурье

; (6)

. (7)

Здесь характеризует тепловую проводимость стенки, а – термическое сопротивление стенки.

Для многослойной стенки термическое сопротивление отдельных стенок необходимо суммировать

. (8)

Определим количество теплоты, передаваемое за время t через площадь F

Лекция 4. КОНДУКТИВНЫЙ ТЕПЛООБМЕН.

4.1 Уравнение Фурье для трехмерного нестационарного

температурного поля

4.2 Коэффициент температуропроводности. Физический смысл

4.3 Условия однозначности – краевые условия

4.1 Уравнение Фурье для трехмерного нестационарного

температурного поля

Изучение любого физического процесса связано с установлением зависимости между величинами его характеризующими. Для установления такой зависимости при изучении довольно сложного процесса теплопроводности использованы методы математической физики, суть которых заключается в рассмотрении процесса не во всем изучаемом пространстве, а в элементарном объеме вещества в течение бесконечно малого отрезка времени. Связь между величинами, участвующими в передаче теплоты теплопроводностью, устанавливается дифференциальным уравнением - уравнением Фурье для трехмерного нестационарного температурного поля.

При выводе дифференциального уравнения теплопроводности принимаются следующие допущения:

Внутренние источники теплоты отсутствуют;

Тело однородно и изотропно;

Используется закон сохранения энергии – разность между количеством теплоты, вошедшей вследствие теплопроводности в элементарный объем за время dτ и вышедшей из него за то же время, расходуется на изменение внутренней энергии рассматриваемого элементарного объема.

В теле выделяется элементарный параллелепипед с ребрами dx, dy, dz. Температуры граней различны, поэтому через параллелепипед проходит теплота в направлениях осей x, y, z.


Рисунок 4.1 К выводу дифференциального уравнения теплопроводности

Через площадку dx·dy за время dτ, согласно гипотезе Фурье, проходит следующее количество теплоты:

https://pandia.ru/text/80/151/images/image003_138.gif" width="253" height="46 src="> (4.2)

где https://pandia.ru/text/80/151/images/image005_105.gif" width="39" height="41"> определяет изменение температуры в направлении z.

После математических преобразований уравнение (4.2) запишется:

https://pandia.ru/text/80/151/images/image007_78.gif" width="583" height="51 src=">, после сокращения:

https://pandia.ru/text/80/151/images/image009_65.gif" width="203" height="51 src="> (4.4)

https://pandia.ru/text/80/151/images/image011_58.gif" width="412" height="51 src="> (4.6)

С другой стороны, согласно закону сохранения энергии:

https://pandia.ru/text/80/151/images/image013_49.gif" width="68" height="22 src=">.gif" width="203" height="51 src=">. (4.8)

Величина https://pandia.ru/text/80/151/images/image017_41.gif" width="85" height="41 src="> (4.9)

Уравнение (4.9) называется дифференциальным уравнением теплопроводности или уравнением Фурье для трехмерного нестационарного температурного поля при отсутствии внутренних источников теплоты. Оно является основным уравнением при изучении процессов теплопроводности и устанавливает связь между временным и пространственным изменением температуры в любой точке температурного поля .

Дифференциальное уравнение теплопроводности с источниками теплоты внутри тела:

https://pandia.ru/text/80/151/images/image019_35.gif" width="181" height="50">

Следует, что изменение температуры во времени для любой точки тела пропорционально величине а .

Величина https://pandia.ru/text/80/151/images/image021_29.gif" width="26" height="44">. При одинаковых условиях быстрее увеличивается температура у того тела, которое имеет больший коэффициент температуропроводности. Так газы имеют малый, а металлы большой коэффициент температуропроводности.

В нестационарных тепловых процессах а характеризует скорость изменения температуры.

4.3 Условия однозначности – краевые условия

Дифференциальное уравнение теплопроводности (или система дифференциальных уравнений конвективного теплообмена) описывают эти процессы в самом общем виде. Для изучения конкретного явления или группы явлений переноса теплоты теплопроводностью или конвекцией, необходимо знать: распределение температур в теле в начальный момент, температуру окружающей среды, геометрическую форму и размеры тела, физические параметры среды и тела, граничные условия, характеризующие распределение температур на поверхности тела или условия теплового взаимодействия тела с окружающей средой.

Все эти частные особенности объединяют в так называемые условия однозначности или краевые условия , которые включают:


1) Начальные условия . Задают условия распределения температур в теле и температуру окружающей среды в начальный момент времени τ = 0.

2) Геометрические условия . Задают форму, геометрические размеры тела и его положение в пространстве.

3) Физические условия . Задают физические параметры среды и тела.

4) Граничные условия могут быть заданы тремя способами.

Граничное условие I рода : задается распределение температуры на поверхности тела для любого момента времени;

Граничное условие II рода : Задается плотностью теплового потока в каждой точке поверхности тела для любого момента времени.

Граничное условие III рода : задается температурой среды, окружающей тело, и законом теплоотдачи между поверхностью тела и окружающей средой.

Законы конвективного теплообмена между поверхностью твердого тела и окружающей средой отличаются большой сложностью. В основу теории конвективного теплообмена положено уравнение Ньютона-Рихмана, устанавливающего связь между плотностью теплового потока на поверхности тела q и температурным напором (tcт – tж), под воздействием которого и происходит теплоотдача на поверхности тела:

q = α·(tcт – tж), Вт/м2 (4.11)

В этом уравнении α – коэффициент пропорциональности, называемый коэффициентом теплоотдачи, Вт/м2·град.

Коэффициент теплоотдачи характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Он численно равен количеству теплоты отдаваемой (или воспринимаемой) единицей поверхности тела в единицу времени при разности температур между поверхностью тела и окружающей средой в 1 градус. Коэффициент теплоотдачи зависит от очень многих факторов и его определение весьма затруднительно. При решении задач теплопроводности его значение, как правило, принимают постоянным.

Согласно закону сохранения энергии, количество теплоты, отдаваемое единицей поверхности тела окружающей среде в единицу времени вследствие теплоотдачи должно быть равно теплоте, которая путем теплопроводности подводится к единице поверхности в единицу времен со стороны внутренних частей тела:

https://pandia.ru/text/80/151/images/image023_31.gif" width="55" height="47 src=">- проекция градиента температуры на направление нормали к площадке dF.

Приведенное равенство является математической формулировкой граничного условия III рода.

Решение дифференциального уравнения теплопроводности (или системы уравнений для процессов конвективного теплообмена) при заданных условиях однозначности позволяет определить температурное поле во всем теле для любого момента времени, т. е. найти функцию вида: t = f(x, y, z, τ).

ПРЕДИСЛОВИЕ

«Гидравлика и теплотехника» является базовой общеинженерной дисциплиной для студентов, обучающихся по направлению «Защита окружающей среды». Она состоит из двух частей:

Теоретические основы технологических процессов;

Типовые процессы и аппараты промышленной технологии.

Вторая часть включает три основных раздела:

Гидродинамика и гидродинамические процессы;

Тепловые процессы и аппараты;

Массообменные процессы и аппараты.

По первой части дисциплины были опубликованы конспекты лекций Н.Х. Зиннатуллина, А.И. Гурьянова, В.К. Ильина (Гидравлика
и теплотехника, 2005); по первому разделу второй части дисциплины – учебное пособие Н.Х. Зиннатуллина, А.И. Гурьянова, В.К. Ильина, Д.А. Елдашева (Гидродинамика и гидродинамические процессы, 2010).

В данном пособии излагается второй раздел второй части. В этом разделе будут рассмотрены наиболее распространенные случаи кондуктивного и конвективного теплообмена, промышленные способы передачи тепла, выпаривание, а также принцип работы и конструкции теплообменной аппаратуры.

Учебное пособие состоит из трех глав, каждая из них заканчивается вопросами, которые студенты могут использовать для самоконтроля.

Основная задача представленного учебного пособия – научить студентов проводить инженерные расчеты тепловых процессов и подбор необходимой аппаратуры для их проведения.

ЧАСТЬ. 1. ТЕПЛООБМЕН

Промышленные технологические процессы протекают в заданном направлении только при определенных температурах, которые создаются путем подвода или отвода тепловой энергии (теплоты). Процессы, скорость протекания которых зависит от скорости подвода или отвода теплоты, называются тепловыми. Движущей силой тепловых процессов является разность температур между фазами. Аппараты, в которых осуществляются тепловые процессы, называются теплообменниками, в них тепло переносится теплоносителями.

Расчет теплообменных процессов сводится обычно к определению межфазной поверхности теплообмена. Эта поверхность находится
из уравнения теплопередачи в интегральной форме. Коэффициент теплопередачи, как известно, зависит от коэффициентов теплоотдачи фаз,
а также от термического сопротивления стенки. Ниже будут рассмотрены способы их определения, нахождение поля температур и тепловых потоков. Там, где это возможно, искомые величины находятся из решения уравнений законов сохранения, а в остальных случаях используются упрощенные математические модели или метод физического моделирования.

Конвективный теплообмен

При конвекции перенос теплоты происходит макрообъемными частицами потока теплоносителя. Конвекция всегда сопровождается теплопроводностью. Как известно, теплопроводность – явление молекулярное, конвекция – явление макроскопическое, при котором
в переносе теплоты участвуют целые слои теплоносителя с разными температурами. Конвекцией теплота переносится намного быстрее, чем теплопроводностью. Конвекция у поверхности стенки аппарата затухает.

Конвективный перенос теплоты описывается уравнением Фурье-Кирхгофа. Закономерности течения среды описываются уравнениями Навье-Стокса (ламинарный режим) и Рейнольдса (турбулентный режим), а также уравнением неразрывности. Исследование закономерностей конвективного теплообмена можно провести в изотермической и неизотермической постановке.

В изотермической постановке сначала решаются уравнения Навье-Стокса и неразрывности, затем полученные значения скоростей используются для решения уравнения Фурье-Кирхгофа. Полученные таким способом значения коэффициентов теплоотдачи впоследствии уточняются, корректируются.

В неизотермической постановке уравнения Навье-Стокса, неразрывности и Фурье-Кирхгофа решаются совместно, с учетом зависимости теплофизических свойств среды от температуры.
Как показывают экспериментальные данные, зависимости с р (Т ), l(Т )
и r(Т ) слабые, а m(Т ) – очень сильная. Поэтому обычно учитывается только зависимость m(Т ). Она, эта зависимость, может быть представлена в виде зависимости Аррениуса или, проще, в виде алгебраического уравнения. Таким образом, возникают так называемые сопряженные задачи.

В последнее время разработаны методы решения многих задач теплоотдачи в ламинарных потоках жидкости с учетом зависимости вязкости жидкости от температуры. Для турбулентных течений все сложнее. Однако можно использовать приближенные численные решения с помощью компьютерных технологий.

Для решения этих уравнений необходимо поставить условия однозначности, которые включают начальные и граничные условия.

Граничные условия теплообмена могут быть заданы различным способом:

Граничные условия первого рода – задаются распределением температуры стенки:

; (19)

простейший случай, когда Т c т = const;

Граничные условия второго рода – задается распределение теплового потока на стенке

; (20)

Граничные условия третьего рода – задается распределение температуры среды, окружающей канал и коэффициент теплоотдачи
от среды к стенке или наоборот

. (21)

Выбор вида граничного условия зависит от условий работы теплообменного оборудования.

На плоской пластине

Рассмотрим поток, обладающий неизменными теплофизическими характеристиками (r, m, l, c p = const), совершающий вынужденное движение вдоль плоской полубесконечной тонкой пластины и обменивающейся с ней теплом. Предположим, что неограниченный поток со скоростью
и температурой Т ° набегает на полубесконечную пластину, совпадающую
с плоскостью х z и имеющую температуру Т ст = const.

Выделим гидродинамический и тепловой пограничные слои
с толщиной d г и d т соответственно (область 99 % изменение скорости w x
и температуры T ). В ядре потока и Т ° постоянны.

Проанализируем уравнения неразрывности и Навье-Стокса. Задача двухмерная, поскольку w z , . По экспериментальным данным известно, что в гидродинамическом пограничном слое . В ядре потока const, поэтому, согласно уравнению Бернулли , в пограничном слое то же самое

.

Как известно «х » d г, поэтому .

Следовательно, имеем

; (22)

. (23)


Записывать аналогичные уравнения для оси у не имеет смысла, так как w y может быть найдена из уравнения неразрывности (22). Используя аналогичные процедуры можно упростить и уравнение Фурье-Кирхгофа

. (24)

Система дифференциальных уравнений (22)–(24) составляет изотермическую математическую модель плоского стационарного теплового ламинарного пограничного слоя. Сформулируем граничные условия
на границе с пластиной, т.е. при у = 0: при любом х скорость w x = 0 (условие прилипания). На границе и вне гидродинамического погранслоя,
т.е. при у ≥ d г (х ), а также при х = 0 для любого у : w x = . Для поля температуры аналогичные рассуждения.

Итак, граничные условия:

w x (x , 0) = 0, x > 0; w x (x , ∞) = ; w x (0, y) = ; (25)

T (x , 0) = T ст, x > 0; T (x , ∞) = T ° ; T (0, y ) = T ° . (26)

Точное решение этой задачи в виде бесконечных рядов было получено Блазиусом. Имеются более простые приближенные решения: метод интегральных соотношений (Юдаев) и теорема импульсов (Шлихтинг). А.И. Разиновым задача была решена методом сопряженного физического
и математического моделирования. Были получены профили скоростей
w x (x , y ), w y (x , y ) и температур Т , а также толщины пограничных слоев
d г (x ) и d т (х )

; (27)

, Pr ≥ 1; (28)

Pr = ν/a.

Коэффициент А в формуле (27) у Разинова – 5,83; Юдаева – 4,64; Блаузиуса – 4; Шлихтинга – 5,0. Примерный вид найденных зависимостей приведен на рис. 1.3.

Как известно, для газов Pr ≈ 1, капельных жидкостей Pr > 1.

Полученные результаты позволяют определить коэффициенты импульса и теплоотдачи. Локальные значения γ(x ) и Nu г,x

, . (29)

y
w x
T ст
(T–T ст)
d г (x )
d т (x )
x

Рис. 1.3. Гидродинамический и тепловой ламинарные пограничные слои

на плоской пластине

Усредненные значения и по участку длиной l

,
, . (30)

Аналогично для теплоотдачи

,
; (31)

, . (32)

В данном случае аналогия тепло- и импульсоотдачи сохраняется (исходные уравнения одинаковы, граничные условия подобны). Критерий, характеризующий гидродинамическую аналогию процесса теплоотдачи имеет вид

P т-г,x = Nu т, x / Nu г, x = Pr 1/3 . (33)

Если Pr = 1, то P т-г,x = 1, следовательно полная аналогия процессов импульсо- и теплоотдачи.

Из полученных уравнений следует

γ ~ , m; a ~ , l. (34)

Как правило, подобная качественная зависимость выполняется
не только для плоского погранслоя, но и для более сложных случаев.

Задача рассматривается в изотермической постановке, тепловые граничные условия первого рода Т ст = const.

По мере удаления от кромки пластины (увеличения координаты х ) происходит рост d г (х ). При этом неоднородность поля скорости w x распространяется в области все более удаленные от границы раздела фаз,
что является предпосылкой возникновения турбулентности. Наконец, при Re x, кp начинается переход ламинарного режима в турбулентный. Переходная зона соответствует значениям х , рассчитанным по Re x от 3,5 × 10 5 ÷ 5 × 10 5 .
На расстояниях Re x > 5 × 10 5 весь пограничный слой турбулизируется,
за исключением вязкого или ламинарного подслоя толщиной d 1г. В ядре потока скорость не меняется. Если Pr > 1 то внутри вязкого подслоя можно выделить тепловой подслой толщиной d 1т, в котором молекулярный перенос тепла преобладает над турбулентным.

Толщина же всего турбулентного теплового пограничного слоя обычно определяется из условия ν т = а т, следовательно d г = d т.

Сначала рассмотрим турбулентный гидродинамический пограничный слой (рис. 1.4). Оставим в силе все приближения, сделанные для ламинарного слоя. Единственное отличие – наличие ν т (у ), поэтому

. (35)

Сохраним и граничные условия. Решением системы уравнений (35)
и (22) с граничными условиями (25), используя полуэмпирическую модель пристенчатой турбулентности Прандтля, можно получить характеристики турбулентного пограничного слоя. В вязком подслое, где реализуется линейный закон распределения скорости, можно пренебречь турбулентным переносом импульса, а вне его молекулярным. В пристенной области
(за вычетом вязкого подслоя) обычно принимается логарифмический профиль скорости, а во внешней области – степенной закон с показателем 1/7 (рис. 1.4).

Рис. 1.4. Гидродинамический и тепловой турбулентные пограничные слои

на плоской пластине

Как и в случае ламинарного пограничного слоя возможно использование осредненных по длине l коэффициентов импульсоотдачи

. (36)

Рассмотрим тепловой турбулентный пограничный слой. Уравнение энергии имеет вид

. (37)

Если Pr > 1, то внутри вязкого подслоя можно выделить тепловой подслой, где молекулярный перенос тепла

. (38)

Для локального коэффициента теплоотдачи решение математической модели имеет вид

Среднее по длине пластины значение определяется так

Ниже представлены образование турбулентного пограничного слоя (а) и распределение локального коэффициента теплоотдачи (б) при продольном обтекании плоской полубесконечной пластины (рис. 1.5).

Рис. 1.5. Пограничные слои d г и d т и локальный коэффициент теплоотдачи a

на плоской пластине

В ламинарном слое (х l кр) тепловой поток только за счет теплопроводности, для качественной оценки можно использовать соотношение a ~ .

В переходной зоне общая толщина пограничного слоя увеличивается. Однако значение a при этом увеличивается, потому что толщина ламинарного подслоя уменьшается, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией вместе
с перемещающейся массой жидкости, т.е. более интенсивно. В результате суммарное термическое сопротивление теплоотдачи убывает. В зоне развитого турбулентного режима коэффициент теплоотдачи вновь начинает убывать из-за возрастания общей толщины пограничного слоя a ~ .

Итак, рассмотрены гидродинамический и тепловой пограничные слои на плоской пластине. Качественный характер полученных зависимостей справедлив и для пограничных слоев, образующихся при обтекании более сложных поверхностей.

Теплообмен в круглой трубе

Рассмотрим стационарный теплообмен между стенками горизонтальной прямой трубы круглого сечения и потоком, обладающим неизменными теплофизическими характеристиками и движущимся за счет вынужденной конвекции внутри нее. Примем тепловые граничные условия первого рода, т.е. Т ст = const.

I. Участки гидродинамической и термической стабилизации.

При входе жидкости в трубу за счет торможения, вызываемого стенками, на них формируется гидродинамический пограничный слой.
По мере удаления от входа толщина пограничного слоя возрастает,
пока пограничные слои, прилегающие к противоположенным стенам,
не сомкнутся. Этот участок называется начальным или участком гидродинамической стабилизации – l нг.

Подобно изменению профиля скоростей по длине трубы изменяется
и профиль температур.

II. Рассмотрим ламинарное движение жидкости.

Ранее, в разделе дисциплины «Гидродинамика и гидродинамические процессы» , нами был рассмотрен гидродинамический начальный участок. Для определения длины начального участка была предложена следующая зависимость

.

Для жидкости Pr > 1, следовательно, тепловой пограничный слой будет находиться внутри гидродинамического пограничного слоя.
Это обстоятельство позволяет считать, что тепловой пограничный слой развивается в стабилизированном гидродинамическом участке и профиль скорости известен – параболический.

Температура жидкости во входном сечении теплообменного участка постоянна по сечению и равна Т ° и в ядре потока она не меняется. При этих условиях уравнение теплового пограничного слоя имеет вид

. (41)

Решение этого уравнения при вышеперечисленных условиях дает:

· для длины теплового начального участка

; (42)

· для местного коэффициента теплоотдачи

; (43)

· для среднего коэффициента теплоотдачи длиной

; (44)

· для местного числа Нуссельта

; (45)

· для среднего числа Нуссельта

. (46)

Рассмотрим уравнение (42). Если , то .
Для жидкостей Pr > 1, поэтому в большинстве случаев, особенно
для жидкостей с большим Pr , теплообмен при ламинарном режиме движения осуществляется в основном на участке термической стабилизации. Как видно из соотношения (43) a для трубы на участке термической стабилизации уменьшается по мере удаления от входа (увеличивается толщина теплового пограничного слоя d т) (рис. 1.6).

Рис. 1.6. Профиль температуры на начальном и стабилизированном участке

при ламинарном течении жидкости в цилиндрической трубе

При турбулентном течении потока в трубе, как и на плоской пластине, во-первых, толщины гидродинамического и теплового пограничных слоев совпадают; а во-вторых, растут значительно быстрее, чем для ламинарных. Это приводит к уменьшению длины участков термической
и гидродинамической стабилизации, что позволяет в большинстве случаев пренебрегать ими при расчете теплоотдачи

. (47)

III. Стабилизированный теплообмен при ламинарном движении среды.

Рассмотрим стационарный теплообмен в круглой трубе, когда теплофизические свойства жидкости постоянны (изотермический случай), профиль скорости не меняется по длине, температура стенки трубы постоянна и равна Т ст, в потоке отсутствуют внутренние источники тепла,
а количество тепла, выделяющееся вследствие диссипации энергии, пренебрежимо мало. При этих условиях уравнение теплообмена имеет такой же вид, что для пограничного слоя. Следовательно, исходным уравнением для изучения теплообмена является уравнение (41).

Граничные условия:

(48)

Решение этой задачи впервые было получено Гретцем, затем Нуссельтом, в виде суммы бесконечного ряда. Несколько иное решение было получено Шумиловым и Яблонским. Полученное решение справедливо
и для участка термической стабилизации при условии предварительной гидродинамической стабилизации потока.

Для области стабилизированного теплообмена локальный коэффициент теплоотдачи равен предельному

или (49)

Как видно из рисунка (рис. 1.7), с увеличением число Nu уменьшается, асимптотически приближаясь на втором участке кривой
к постоянному значению Nu = 3,66. Это происходит, потому что для стабилизированного теплообмена профиль температуры по длине трубы
не меняется. На первом участке происходит формирование профиля температуры. Первый участок соответствует термическому начальному участку.

10 –5 10 –4 10 –3 10 –2 10 –1 10 0
1
3,66
Nu
Nu

Рис. 1.7. Изменение местного и среднего Nu по длине круглой трубы при Т ст = const

IV. Стабилизированный теплообмен при турбулентном движении среды.

Исходное уравнение

. (50)

Граничные условия:

(51)

При решении задачи возникает проблема выбора профиля скорости w x . Одни для w x используют логарифмический закон (А.И. Разинов), другие – закон 1/7 (В.Б. Коган). Отмечается консервативность турбулентных течений, которая заключается в слабом влиянии граничных условий и поля скорости w x на коэффициенты теплоотдачи.

Для числа Нуссельта предлагается следующая формула

. (52)

Как и для ламинарного движения в области стабилизированного теплообмена при турбулентном течении среды Nu не зависит от координаты х .

Нами был рассмотрены выше частные случаи теплообмена, а именно: при изотермической постановке задачи и тепловых граничных условиях первого рода теплообмен в гладких цилиндрических трубах и плоских горизонтальных пластинах.

В литературе имеются решения тепловых задач и для других случаев. Отметим, что шероховатость поверхности трубы и пластины ведет
к увеличению коэффициента теплоотдачи.

Подвод теплоты

Для решения этой задачи применяют различные теплоносители.
ТН классифицируются по:

1. По назначению:

Греющий ТН;

Охлаждающий ТН, хладаноситель;

Промежуточный ТН;

Сушильный агент.

2. По агрегатному состоянию:

· Однофазные :

Низкотемпературная плазма;

Неконденсирующиеся пары;

Не кипящие и неиспаряющиеся при данном давлении жидкости;

Растворы;

Зернистые материалы.

· Много-, двухфазные :

Кипящие, испаряющиеся и распыляемые газом жидкости;

Конденсирующиеся пары;

Плавящиеся, затвердевающие материалы;

Пены, газовзвеси;

Аэрозоли;

Эмульсии, суспензии и т.д.

3. По диапазону температур и давления:

Высокотемпературные ТН (дымовые, топочные газы, расплавы солей, жидкие металлы);

Среднетемпературные ТН (водяной пар, вода, воздух);

Низкотемпературные ТН (при атмосферном давлении T кип ≤ 0 °C);

криогенные(сжиженные газы – кислород, водород, азот, воздух и др.) .

С увеличением давления растет и температура кипения жидкостей.

В качестве прямых источников тепловой энергии на промышленных предприятиях используют топочные (дымовые) газы и электроэнергию. Вещества, передающие от этих источников теплоту, в ТО называют промежуточными ТН. Наиболее распространенные промежуточные ТН:

Водяной пар насыщенный;

Горячая вода;

Перегретая вода;

Органические жидкости и их пары;

Минеральные масла, жидкие металлы.

Требования к ТН:

Большая r, с р ;

Высокое значение теплоты парообразования;

Низкая вязкость;

Негорючесть, нетоксичность, термостойкость;

Дешевизна.

Отвод теплоты

Многие процессы промышленной технологии протекают в условиях, когда возникает необходимость отвода теплоты, например, при охлаждении газов, жидкостей или при конденсации паров.

Рассмотрим некоторые способы охлаждения.

Охлаждение водой и низкотемпературными жидкими хладагентами.

Охлаждение водой используют для охлаждения среды до 10–30 °С. Речная, прудовая и озерная вода в зависимости от времени года имеет температуру 4–25 °С, артезианская – 8–12 °С, а оборотная (летом) – около 30 °С.

Расход охлаждающей воды определяют из уравнения теплового баланса

. (83)

Здесь – расход охлаждаемого теплоносителя; Н н и Н к – начальная
и конечная энтальпии охлаждаемого теплоносителя; Н нв и Н кв – начальная
и конечная энтальпии охлаждающей воды; – потери в окружающую среду.

Достижение более низких температур охлаждения можно обеспечить
с помощью низкотемпературных жидких хладагентов.

Охлаждение воздухом . Наиболее широко воздух в качестве охлаждающего агента используют в смесительных теплообменниках – градирнях, являющихся основным элементом оборудования водооборотного цикла (рис. 2.5).

Рис. 2.5. Градирни с естественной (а) и принудительной (б) тягой

Горячая вода в градирне охлаждается как за счет контакта с холодным воздухом, так и в результате так называемого испарительного охлаждения,
в процессе испарения части потока воды.

Смесительные теплообменники

В смесительных теплообменниках (СТО) передача тепла от одного теплоносителя к другому происходит при их непосредственном соприкосновении или смешении, следовательно, термическое сопротивление стенки (разделяющей теплоносители) отсутствует. Наиболее часто СТО применяют для конденсации паров, нагревания и охлаждения воды и паров. По принципу устройства СТО подразделяют на барботажные, полочные, насадочные и полые (с разбрызгиванием жидкости) (рис. 2.18).

пар
вода
в
воздух
вода
вода
вода
пар
г
пар
нагретая жидкость
а
воздух
вода
пар
вода + конденсат
б
жидкость

Рис. 2.18. Схемы СТО: а) барботажный смесительный теплообменник для нагрева воды;

б) насадочный теплообменник-конденсатор; в) полочный барометрический конденсатор; г) полый

ЧАСТЬ 3. ВЫПАРИВАНИЕ

Выпаривание – процесс концентрирования растворов твердых нелетучих веществ путем удаления летучего растворителя в виде паров. Выпаривание обычно проводится при кипении. Обычно из раствора удаляется только часть растворителя, так как вещество должно оставаться
в текучем состоянии.

Существует три метода выпаривания:

Поверхностное выпаривание осуществляется путем нагревания раствора на теплообменной поверхности за счет подвода тепла к раствору через стенку от греющего пара;

Адиабатическое выпаривание, которое происходит путем мгновенного испарения раствора в камере, где давление ниже, чем давление насыщенного пара;

Выпаривание путем контактного испарения - нагревание раствора осуществляется при прямом контакте между движущимся раствором
и горячим теплоносителем (газом или жидкостью).

В промышленной технологии в основном применяется первый метод выпаривания. Далее о первом методе. Для осуществления процесса выпаривания необходимо теплоту от теплоносителя передать кипящему раствору, что возможно лишь при наличии разности температур между ними. Разность температур между теплоносителем и кипящим раствором называют полезной разностью температур.

В качестве теплоносителя в выпарных аппаратах применяется насыщенный водяной пар (греющий или первичный). Выпаривание – типичный теплообменный процесс – перенос теплоты за счет конденсации насыщенного водяного пара к кипящему раствору.

В отличие от обычных теплообменников выпарные аппараты состоят из двух основных узлов: греющей камеры или кипятильника и сепаратора. Сепаратор предназначен для улавливания капель раствора из пара, который образуется при кипении. Этот пар называется вторичным или соковым. Температура вторичного пара всегда меньше температуры кипения раствора. Для поддержания постоянного вакуума в конденсаторе необходимо отсасывать парогазовую смесь вакуум-насосом.

В зависимости от давления вторичного пара различают выпаривание при р атм, р изб, р вак. В случае выпаривания при р вак снижается температура кипения раствора, при p изб – вторичный пар используется в технологических целях. Температура кипения раствора всегда выше температуры кипения чистого растворителя. Например, для насыщенного водного раствора
NaCl (26 %) T кип = 110 °С, для воды T кип = 100 °С. Вторичный пар, отбираемый из выпарной установки для других нужд, называется экстра паром .

Температурные потери

Обычно в однокорпусных выпарных установках известны давления греющего и вторичного паров, т.е. их температуры. Разность между температурами греющего и вторичного паров называют общей разностью температур выпарных аппаратов

. (96)

Общая разность температур связана с полезной разностью температур соотношением

Здесь D¢ - концентрационная температурная депрессия; D¢¢ - гидростатическая температурная депрессия; D¢ определяют как разницу температур кипения раствора Т кип. р и чистого растворителя Т кип. чр при p = = const

D¢ = Т кип. р – Т кип. чр, Т кип. чр, D¢ = Т кип. р - T вп. (98)

Температура образующегося при кипении раствора вторичных паров ниже, чем температура кипения самого раствора, т.е. часть температур теряется бесполезно; D¢¢ характеризует повышение температуры кипения раствора с увеличением гидростатического давления. Обычно по высоте кипятильных труб определяют среднее давление, и для этого давления определяют среднюю температуру кипения растворителя Т ср.

Здесь p a - давление в аппарате; r пж - плотность парожидкостной смеси
в кипятильных трубах ; H - высота кипятильных труб.

D² = T ср - T вп, (99)

где T ср - температура кипения растворителя при p = p ср; T вп - температура вторичного пара при давлении p а.

Многокорпусное выпаривание

В многокорпусной выпарной установке вторичный пар (рис. 3.2, 3.3) предыдущего корпуса используется в качестве греющего пара
в последующем корпусе. Такая организация выпаривания приводит
к значительной экономии греющего пара. Если принять по всем корпусам, то общий расход греющего пара на процесс уменьшается пропорционально числу корпусов. Практически, в реальных условиях такое соотношение не выдерживается, оно, как правило, выше. Далее рассмотрим уравнения материальных и тепловых балансов для многокорпусной выпарной установки (см. рис. 3.2), которые представляют собой систему уравнений, записанных для каждого корпуса в отдельности.

Осуществляется вследствие соударения молекул, электронов и агрегатов элементарных частиц друг с другом. (Теплота переходит от более нагретого тела к менее нагретому). Или в металах: постепенная передача колебаний кристаллической решётки от одной частицы к другой (упругие колебания частиц решётки – фононная теплопроводность).

Конвективный перенос;

Этот перенос связан с движением частиц флюидов и обусловлен перемещением микроскопических элементов веществ, его осуществляет свободное или вынужденное движение теплоносителя.

Под воздействием градиента температуры в земной коре возникают конвективные потоки не только тепла, но и вещества. Возникает термогидродинамический градиент давления.


Можно наблюдать и такое явление, что при возникновении гидродинамического градиента давления нефть удерживается в пласте без покрышки.

3. Теплообмен, связанный с излучением .

Радиоактивная единица в результате распада выделяет тепло, и это тепло выделяется вследствии излучения.

33. Тепловые свойства нефтегазового пласта, характеристика и область использования .

Тепловыми свойствами являются:

1) Коэффициент теплоёмкости с

2) Коэффициент теплопроводности l

3) Коэффициент температуроппроводности а

1. Теплоёмкость:

с – количество теплоты, необходимое для повышения температуры вещества на один градус при заданных условиях (V, Р=соnst).

с=dQ/dТ

Средняя теплоёмкость вещества: с=DQ/DТ.

Т.к. образцы породы могут иметь разную массу, объём, то для более дифференцированной оценки вводятся специальные виды теплоёмкости: массовая, объёмная и молярная.

· Удельная массовая теплоёмкость [Дж/(кг×град)]:

С m =dQ/dТ=С/m

Это количество теплоты, необходимое для изменения на один градус единицы массы образца.

· Удельная объёмная теплоёмкость [Дж/(м 3 ×К)]:

С v =dQ/(V×dТ)=r×С m ,

где r - плотность

Количество теплоты, которое необходимо сообщить единице для повышения её на один градус, в случае Р, V=соnst.

· Удельная молярная теплоёмкость [Дж/(моль×К)]:

С n =dQ/(n×dТ)=М×С m ,

где М – относительная молекулярная масса [кг/кмоль]

Количество теплоты, которое надо сообщить молю вещества для изменения его температуры на один градус.

Теплоёмкость является аддитивным свойством пласта:

С i = j=1 N SС j ×К i , где SК i =1, К – количество фаз.

Теплоёмкость зависит от пористости пласта: чем больше пористость, тем меньше теплоёмкость.

(с×r)=с ск ×r ск ×(1-k п)+с з ×r з ×k п,

где с з – коэффициент заполнения пор;

k п – коэффициент пористости.

Теплопроводность.

l [Вт/(м×К)] характеризует свойство породы передавать кинетическую (или тепловую) энергию от одного элемента к другому.

Коэффициент теплопроводности – количество тепла, проходящее за единицу времени через кубический объём вещества с гранью единичного размера, при этом на других гранях поддерживается разница температур в один градус (DТ=1°).

Коэффициент теплопроводности зависит от:

ü минерального состава скелета. Разброс значений коэффициентов может достигать десяти тысяч раз.

Например, самый большой l у алмаза – 200 Вт/(м×К), т.к. у его кристалла практически отсутствуют структурные дефекты. Для сравнения, l воздуха составляет 0,023 Вт/(м×К), воды – 0,58 Вт/(м×К).

ü степени наполненности скелета.

ü Теплопроводности флюидов.

Существует такой параметр, как контактный коэффициент теплопроводности .

Наибольшим из контактных коэффициентов обладает кварц – 7-12 Вт/(м×К). Далее идут гидрохимические осадки, каменная соль, сильвин, ангидрит.

Пониженный контактный коэффициент имеют уголь и асбест.

Аддитивность для коэффициента теплопроводности не соблюдается, зависимость не подчиняется правилу аддитивности.

Например, теплопроводность минералов может быть записана следующим образом:

1gl=Sv i ×1gl i ,

где 1gl i – логарифм l i-ой фазы с объёмным содержанием v i .

Важным свойством является величина обратная теплопроводности, именуемая тепловым сопротивлением.

Вследствие теплового сопротивления, мы имеем сложное распределение тепловых полей. Это приводит к тепловой конвекции, благодаря которой могут образовываться особые типы залежей – не обычная покрышка, а термодинамическая.

Термодинамическое сопротивление снижается со снижением плотности, проницаемости, влажности, а также (в северных районах) степени льдистости.

Повышается оно при замещении воды нефтью, газом или воздухом в процессе теплового изменения давления, с увеличением слоистой неоднородности, явления анизотропии.

Наибольшим тепловым сопротивлением обладают угли, сухие и газонасыщенные породы.

При переходе от терригенных пород к карбонатным тепловое сопротивление снижается.

Минимальным тепловым сопротивлением обладают гидрохимические осадки, такие как галит, сильвин, мирабелит, ангидрит, т.е. породы, обладающие структурой пластинчатой соли.

Глинистые пласты, среди всех пластов, выделяются максимальным тепловым сопротивлением.

Из всего этого мы можем заключить, что тепловое сопротивление определяет степени тепловой инерции, тепловой проводимости.

Температуропроводность.

На практике часто используется такой коэффициент, как температуропроводность , который характеризует скорость изменения температуры при нестационарном процессе теплопередачи.

а=l/(с×r), когда l=соnst.

На самом деле «а» не является постоянной, т.к. l является функцией координат и температуры, а с – коэффициента пористости, массы и т.д.

При разработке мы можем использовать процессы, в которых возможно возникновение внутреннего источника тепла (например, закачка кислоты), в таком случае уравнение будет выглядеть так:

dТ/dt=а×Ñ 2 Т+Q/(с×r),

где Q – теплота внутреннего источника тепла, r - плотность породы.

Теплопередача.

Следующим важным параметром является теплопередача.

DQ=k т ×DТ×DS×Dt,

где k т – коэффициент теплопередачи.

Его физический смысл: количество тепла, ушедшего в соседние пласты, через единицу поверхности, в единицу времени при изменении температуры на один градус.

Обычно теплопередача связана с вытеснением в выше и ниже лежащие пласты.

34. Влияние температуры на изменение физических свойств нефтегазового пласта.

Тепло, которое поглощается породой, расходуется не только на кинетические тепловые процессы, но и на совершение механической работы, она связана с тепловым расширением пласта. Это тепловое расширение связано с зависимостью сил связи атомов в решётке отдельных фаз от температуры, в частности появляющаяся в направленности связей. Если атомы легче смещаются при удалении друг от друга, чем при сближении, происходит смещение центров колющихся атомов, т.е. деформация.

Связь между ростом температуры и линейной деформацией может быть записана:

dL=a×L×dТ ,

где L – первоначальная длина [м], a - коэффициент линейного теплового расширения .

Аналогично для объёмного расширения:

dV/V=g т ×dТ,

где g т – коэффициент объёмной тепловой деформации.

Поскольку коэффициенты объёмного расширения сильно различаются для разных зёрен, то в процессе воздействия произойдут неравномерные деформации, что приведёт к разрушению пласта.

В точках соприкосновения происходит сильная концентрация напряжений, следствием чего является вынос песка и соответственно разрушение породы.

Явление вытеснения нефти и газа также связано с объёмным расширением . Это так называемый процесс Джоуля-Томпсона. При эксплуатации происходит резкое изменение объёма, возникает эффект дросселирования (теплового расширения с изменением температуры). Термодинамическая дебитометрия основана на изучении этого эффекта.

Введём ещё один параметр – адиабатический коэффициент : h s =dТ/dр.

Дифференциальный адиабатический коэффициент определяет изменение температуры в зависимости от изменения давления.

Величина h S >0 при адиабатическом сжатии. При этом вещество нагревается. Исключением является вода, т.к. в интервале от 0¼4° она остывает.

h S =V/(С р ×g)×a×Т,

где V – объём, Т – температура, a - коэффициент линейного расширения, g – ускорение свободного падения.

Коэффициент Джоуля-Томпсона определяет изменение температуры при дросселировании.

e=dТ/dр=V/(С р ×g)×(1 - a×Т)=V/(С р ×g) - h S ,

где V/(Ср×g) определяет нагрев за счёт работы сил трения

h S – охлаждение вещества за счёт адиабатического расширения.

Для жидкости V/Ср×g>>hS Þ Жидкости нагреваются.

Для газов e<0 Þ Газы охлаждаются.

На практике используют шумометрию скважин – метод, основанный на явлении, когда газ при изменении температуры выделяет колебательную энергию, вызывая шум.

35. Изменение свойств нефтегазового пласта в процессе разработки залежи.

1. В естественном состоянии пласты находятся на большой глубине, а, судя по геотермическим ступеням, температура в этих условиях близка к 150°, поэтому можно утверждать, что породы изменяют свои свойства, ведь при проникновении в пласт мы нарушаем тепловое равновесие .

2. Когда мы закачиваем в пласт воду , эта вода имеет температуру поверхности. Попадая в пласт, вода начинает охлаждать пласт, что неминуемо приведёт к различным неблагоприятным явлениям, например парафинизации нефти. Т.е. если в нефти есть парафинистая составляющая, то в результате охлаждения выпадет парафин и закупорит пласт. К примеру, на месторождении Узень температура насыщения нефти парафином Тн=35°(40°), и при его разработки были нарушены эти условия, в результате температура пласта снизилась, парафин выпал, произошла закупорка и разработчикам пришлось длительное время закачивать горячую воду и прогревать пласт, пока весь парафин не растворился в нефти.


3. Высоковязкие нефти.

Для их разжижения используют теплоноситель: горячую воду, перегретый пар, а также внутренние источники тепла. Так в качестве источника используют фронт горения: поджигают нефть и подают окислитель.

В Швейцарии, Франции, Австрии, Италии реализуют и такие проекты:

Метод снижения вязкости нефтей посредством радиоактивных отходов. Они хранятся 10 6 лет, но при этом греют высоковязкую нефть, позволяя легче её добывать.

36. Физическое состояние углеводородных систем в нефтегазовых пластах и характеристики этих состояний.

Возьмём простое вещество и рассмотрим диаграмму состояния:

Р

Точка С является критической точкой, в которой различие между свойствами исчезает.

Давление (Р) и температура (Т), которые характеризуют пласт, могут измеряться в очень широком диапазоне: от десятых МПа до десятков МПа и от 20-40° до более, чем 150°С. В зависимости от этого наши залежи, в которых находятся углеводороды, могут быть разделены на газовые, нефтяные и т. д.

Т.к. на различных глубинах давления меняются от нормальных геостатических до аномально высоких, то углеводородные соединения могут находиться в газообразном, жидком или в виде газожидкостных смесей в залежи.

При высоких давлениях плотность газов приближается к плотности лёгких углеводородных жидкостей. В этих условиях тяжёлые нефтяные фракции могут растворяться в сжатом газе. В результате нефть будет частично растворена в газе. Если количество газа незначительно, то с ростом давления газ растворяется в нефти. Поэтому в зависимости от количества газа и его состояния выделяются залежи:

1. чисто газовые;

2. газоконденсатные;

3. газонефтяные;

4. нефтяные с содержанием растворённого газа.

Граница между газонефтяными и нефтегазовыми залежами условна. Она сложилась исторически, в связи с существованием двух министерств: нефтяной и газовой промышленности.

В США залежи углеводородов делятся по значению газоконденсатного фактора, плотности и цвету жидких углеводородов на:

1) газовые;

2) газоконденсатные;

3) газонефтяные.

Газоконденсатный фактор – это количество газа в кубических метрах, приходящееся на кубометр жидкой продукции.

По американскому стандарту к газоконденсатам относятся залежи, из которых добываются слабоокрашенные или бесцветные углеводородные жидкости с плотностью равной 740-780 кг/м 3 и с газоконденсатным фактором 900-1100 м 3 /м 3 .

В газовых залежах может содержаться адсорбированная связанная нефть, состоящая из тяжёлых углеводородных фракций, составляющая до 30% порового объёма.

Кроме того при определённых давлениях и температурах возможно существование газогидратных залежей, где газ находится в твёрдом состоянии. Наличие таких залежей – большой резерв наращивания добычи газа.

В процессе разработки происходит изменение первоначальных давлений и температур и происходят техногенные преобразования углеводородов в залежи.

Как то из нефти при непрерывной системе разработки может выделится газ, в результате чего у нас произойдёт снижение фазовой проницаемости, увеличение вязкости, в призабойной зоне происходит резкое снижение давления, за которым последует выпадение конденсата, что приведёт к образованию конденсатных пробок.

Кроме того, при транспортировке газа могут происходить фазовые преобразования газа.

38. Фазовые диаграммы однокомпонентных и многокомпонентных систем.

Правило фаз Гипса (показывает вариантность системы – число степеней свободы)

N - число компонентов системы

m – число ее фаз.

Пример: H 2 O (1 комп.) N=1 m=2 Þ r=1

При заланном Р одна только Т

Однокомпонентная систеиа.

Сжимаем от А к В – первая капля жидкости (точка росы или точка конденсации Р=Р нас)

В точке Д остаётся последний пузырек пара, точка парообразования или кипения

У каждой изотермы свои точки кипения и парообразования.

Двухкомпонентная система

Изменяется Р и Т , т. е. давление начала конденсации всегда меньше давления парообразования.


Похожая информация.