Мембранные белки. Биологическая роль мембранных белков Мембранные белки функции

ЛЕКЦИЯ

ТЕМА:” Введение в гистологию. Плазматическая мембрана, строение и функции. Структуры, формируемые плазматической мембраной”

Гистология в дословном переводе - это наука о тканях, однако это понятие не вмещает того действительно большого обьема материала, который освещает эта понастоящему медицинская дисциплина. Курс гистологии начинается с изучения цитологии не столько на светооптическом, сколько на молекулярном уровне, который в современной медицине логически вошел в этиологию и патогенез целого ряда заболеваний. Гистология – это и отдельные разделы из курса эмбриологии, не всей конечно, а той ее части, которая затрагивает вопрос закладки и дифференцировки тканевых зачатков. И,наконец, гистология – это большой раздел частной гистологии, то есть, раздел, изучающий строение и функции различных органов. Перечисленные разделы курса гистологии не оставляют сомнения в том, что изучение нашей дисциплины следует проводить в аспекте сохранения единства клеточного, тканевого, органного и системного уровней организации

Мы начнем гистологию с изучения эукариотической клетки, являющейся самой простой системой, наделенной жизнью. При исследовании клетки в световом микроскопе мы получаем информацию о ее размере, форме, и эта информация связана с наличием у клеток ограниченных мембраной границ. С развитием электронной микроскопии (ЭМ) наши представления о мембране, как о четко ограниченной линии раздела между клеткой и окружающей средой изменились, ибо оказалось,что на поверхности клетки имеется сложная структура, состоящая из следующих 3-х компонентов:

1. Надмембранный компонент (гликокаликс) (5-100 нм)

2. Плазматическая мембрана (8-10 нм)

3. Подмембранный компонент (зона вариации белков цитоскелета)

При этом 1 и 3 компоненты вариабельны и зависят от типа клеток, наиболее статичным представляется строение плазматической мембраны, которую мы и рассмотрим.

Изучение плазмолеммы в условиях ЭМ привело к заключению об однотипности ее структурной организации, при которой она имеет вид триламинарной линии, где внутренний и наружный слои электронноплотные, а расположенный между ними – более широкий слой представляется электроннопрозрачным. Такой тип структурной организации мембраны свидетельствует об ее химической гетерогенности. Не касаясь дискуссии по этому вопросу, оговорим, что плазмолемма состоит из трех типов веществ: липидов, белков и углеводов.

Липиды , входящие в состав мембран, обладают амфифильными свойствами за счет присутствия в их составе как гидрофильных, так и гидрофобных групп.

Амфипатический характер липидов мембраны способствует образованию липидного бислоя. При этом в фосфолипидах мембраны выделяют два домена: а) фосфатная – голова молекулы, химические свойства этого домена определяют его растворимость в воде и его называют гидрофильным

б) ацильные цепи, представляющие собой этерифицированные жирные кислоты – это гидрофобный домен.

Типы мембранных липидов. 1. Основным классом липидов биологических мембран являются фосфо(глицериды) (фосфолипиды), они формируют каркас

биологической мембраны (рис. 1).

Биомембраны – это двойной слой амфифильных липидов (липидный бислой). В водной среде такие амфифильные молекулы самопроизвольно образуют бислой, в котором гидрофобные части молекул ориентированы друг к другу, а гидрофильные к воде (рис. 2).

В состав мембран входят липиды следующих типов:

1. Фосфолипиды

2.Сфинголипиды “головки” + 2 гидрофобных “хвоста”

3.Гликолипиды

Холестерин (ХЛ) – находится в мембране в основном в срединной зоне бислоя, он амфифилен и гидрофобный (за исключением одной гидроксигруппы). Липидный состав влияет на свойства мембран: отношение белок/липиды близок 1:1, однако миелиновые оболочки обогащены липидами, а внутренние мембраны – белками.

Способы упаковки амфифильных липидов : 1. Бислои (липидная мембрана), 2.Липосомы - это пузырек с двумя слоями липидов, при этом как внутренняя, так и наружная поверхности являются полярны. 3. Мицеллы – третий вариант организации амфифильных липидов – пузырек, стенка которого образована одним слоем липидов, при этом их гидрофобные концы обращены к центру мицеллы и их внутренняя среда является не водной, агидрофобной.

Наиболее распространенной формой упаковки молекул липидов является образование ими плоского бислоя мембран. Липосомы и мицеллы – это скорые транспортные формы, обеспечивающие перенос веществ в клетку и из нее. В медицине липосомы используют для переноса водорастворимых, а мицеллы – для переноса жирорастворимых веществ.

Белки мембраны:

1. Интегральные (включены в липидные слои)

2. Периферические

Интегральные (трансмембранные белки):

1. Монотопные – (например, гликофорин. Они пересекают мембрану 1 раз), и являются рецепторами, при этом их наружный – внеклеточный домен – относится к распознающей части молекулы.

2. Политопные – многократно пронизывают мембрану – это тоже рецепторные белки, но они активизируют путь передачи сигнала внутрь клетки.

Мембранные белки, связанные с липидами.

4. Мембранные белки, связанные с углеводами.

Периферические белки – не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются за счет ионных взаимодействий. Периферические белки ассоциированы с интегральными белками в мембране за счет взаимодействия - белок-белковые взаимодействия.

Пример этих белков:

1. Спектрин , который расположен на внутренней поверхности клетки

2. Фибронектин, локализован на наружной поверхности мембраны

Белки – обычно составляют до 50% массы мембраны. При этом

интегральные белки выполняют следующие функции:

а) белки ионных каналов

б) рецепторные белки

2. Периферические мембранные белки (фибриллярные, глобулярные) выполняют функции:

а) наружные (рецепторные и адгезионные белки)

б) внутренние – белки цитоскелета (спектрин, анкирин), белки системы вторых посредников.

Ионные каналы – это сформированные интегральными белками каналы, они формируют небольшую пору, через которую по электрохимическому градиенту проходят ионы. Наиболее известные каналы – это каналы для Nа, К, Са 2 , Сl.

Существуют и водные каналы – это аквопорины (эритроциты, почка, глаз).

Надмембранный компонент – гликокаликс, толщина 50 нм. Это углеводные участки гликопротеинов и гликолипидов, обеспечивающие отрицательный заряд. Под ЭМ – это рыхлый слой умеренной плотности, покрывающий наружную поверхность плазмолеммы. В состав гликокаликса помимо углеводных компонентов входят периферические мембранные белки (полуинтегральные). Функциональные участки их находятся в надмембранной зоне- это иммуноглобулины (рис. 4) .

Функция гликокаликса: 1. Играют рольрецепторов .

2. Межклеточное узнавание .

3. Межклеточные взаимодействия (адгезивные взаимодействия).

4. Рецепторы гистосовместимости.

5. Зона адсорбции ферментов (пристеночное пищеварение).

6. Рецепторы гормонов .

Подмембранный компонент или самая наружная зона цитоплазмы, обычно обладает относительной жесткостью и эта зона особенно богата филаментами (d 5-10 нм). Предполагают, что интегральные белки, входящие в состав клеточной мембраны, прямо или косвенно связаны с актиновыми филаментами, лежащими в подмембранной зоне. При этом экспериментально доказано, что при агрегации интегральных белков, находящийся в этой зоне актин и миозин также агрегируют, что указывает на участие актиновых филамент в регуцляции формы клетки.

Структуры, формируемые плазмолеммой

Контуры клетки, даже на светооптическом уровне, не представляются ровными и гладкими, а электронная микроскопия позволила обнаружить и описать в клетке различные структуры, которые отражают характер ее функциональной специализации. Различают следующие структуры:

1. Микроворсинки – выпячивание цитоплазмы, покрытые плазмолеммой. Цитоскелет микроворсинки сформирован пучком актиновых микрофиламент, которые вплетаются в терминальную сеть апикальной части клеток (рис. 5). Единичные микроворсинки на светооптическом уровне не видны. При наличии значительного их числа (до 2000-3000) в апикальной части клетки уже при световой микроскопии различают “ щеточную каемку”.

2. Реснички – располагаются в апикальной зоне клетки и имеют две части (рис. 6) : а) наружную - аксонему

Б) внутреннюю – безальное тельце

Аксонема состоит из комплекса микротрубочек (9 + 1 пары) и связанных с ними белков. Микротрубочки образованы белком тубулином, а ручки – белком динеином – эти белки в совокупности формируют тубулин-динеиновый хемомеханический преобразователь.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных у основания реснички и служит матрицей при организации аксонемы.

3. Базальный лабиринт – это глубокие инвагинации базальной плазмолеммы с лежащими между ними митохондриями. Это механизм активного всасывания воды, а так же ионов против градиента концентрации.

1. Транспорт низкомолекулярных соединений осуществляется тремя способами:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

Простая диффузия – низкомолекулярные гидрофобные органические соединения (жирные кислоты, мочевина) и нейтральные молекулы (Н О, СО, О). С увеличением разности концентраций между отсеками, разделенными мембраной, растет и скорость диффузии.

Облегченная диффузия – вещество идет через мембрану также по направлению градиента концентрации, но с помощью транспортного белка – транслоказы. Это интегральные белки, обладающие специфичностью в отношении переносимых веществ. Это, например, анионные каналы (эритроцит), К - каналы (плазмолемма возбужденных клеток) и Са - каналы (саркоплазматический ретикулум). Транслоказа для Н О – это аквапорин.

Механизм действия транслоказы:

1. Наличие открытого гидрофильного канала для веществ определенного размера и заряда.

2. Канал открывается только при связывании специфического лиганда.

3. Канала нет как такового, а сама молекула транслоказы, связав лиганд, поворачивается в плоскости мембраны на 180 .

Активный транспорт – это транспорт с помощью такого же транспортного белка (транслоказы), но против градиента концентрации. Это перемещение требует затрат энергии.

Биологическая химия Лелевич Владимир Валерьянович

Белки мембран.

Белки мембран.

Мембранные белки отвечают за функциональную активность мембран и на их долю приходится от 30 до 70%. Белки мембран отличаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его – интегральные белки, разными способами прикрепляться к мембране – поверхностные белки, либо, ковалентно контактировать с ней – заякоренные белки. Поверхностные белки почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов и адгезии.

Белки, локализованные в мембране, выполняют структурную и специфические функции:

1. транспортную;

2. ферментативную;

3. рецепторную;

4. антигенную.

Из книги Заводи кого угодно, только НЕ КРОКОДИЛА! автора Орсаг Михай

Ну а белки? В шестидесятых годах я неоднократно пытался завести в доме и белок, но каждая такая попытка кончалась самым печальным образом. Через некоторое время белки слабели, задние конечности у них отнимались и несчастные животные в судорогах погибали. Поначалу я

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

Не все гены кодируют белки Прежде всего, следует отметить, что кроме генов, кодирующих белки, в геноме имеются еще гены, на которых синтезируется РНК, которые не являются мРНК (то есть, не кодируют белок), но выполняют ряд самостоятельных важных функций в клетках. В

Из книги Живые часы автора Уорд Ритчи

11. Белки в колесе Чтобы познакомиться с современными поисками решения проблемы живых часов, обратимся к исследованиям, проводившимся биологами в последние годы. В числе первых следует, пожалуй, назвать работу Патриции де Курси.В 1955 году де Курси получила диплом

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Кровь: река жизни [От древних легенд до научных открытий] автора Азимов Айзек

Глава 11 Эти подвижные белки В начале предыдущей главы я упомянул, что органические компоненты пищи делятся на три группы. Я рассказал об одной из этих групп: углеводах. Далее логично было бы перейти к белкам, потому что их метаболизм в организме происходит параллельно с

Из книги Логика случая [О природе и происхождении биологической эволюции] автора Кунин Евгений Викторович

Глава 12 Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы Пер. А. НеизвестногоВ предыдущей главе мы обсудили возможные сценарии возникновения клеток и (будем надеяться) достигли

Из книги Гены и развитие организма автора Нейфах Александр Александрович

2. Белки хроматина Мы уже знаем, что хроматин состоит из ДНК и гистонов в равном весовом количестве и негистоновых белков (НГБ), которых в неактивных районах хромосомы всего 0,2 веса ДНК, а в активных - более чем 1,2 (в среднем НГБ мепьше, чем ДНК). Мы знаем также, что гистоны

Из книги Мир животных автора Ситников Виталий Павлович

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

4.1. Образование мембран – основа начала жизни Рассматривая гигантское многообразие современных живых организмов, можно прийти к выводу, что существовало множество путей развития, берущих начало от реликтовых форм жизни. На самом деле исследования молекулярной эволюции

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Клетки, белки и гены Жизнь есть способ существования белковых тел. Ф. Энгельс Наше тело является империей клеток, каждая из которых представляет собой миниатюрную фабрику для производства белков. Многие из этих важнейших макромолекул могут быть выделены из организма в

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Белки Белки имеют первостепенное значение в жизни организмов. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся в их организме белков. Например, в организме человека их известно более 5 млн.Белки – это полимеры,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Химический состав мембран. Мембраны состоят из липидных и белковых молекул, относительное количество которых у разных мембран широко колеблется. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5%-10% веществ мембраны. Согласно жидкостно-мозаичной

Из книги автора

Липиды мембран. Мембранные липиды – амфифильные молекулы, т.е. в молекуле есть как гидрофильные группы (полярные головки), так и алифатические радикалы (гидрофобные хвосты), самопроизвольно формирующие бислой, в котором хвосты липидов обращены друг к другу. Толщина

Из книги автора

Белки Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная

Из книги автора

Белки мышечной ткани Выделяют три группы белков:1. миофибриллярные белки – 45 %;2. саркоплазматические белки – 35 %;3. белки стромы – 20 %.Миофибриллярные белки.К этой группе относятся:1. миозин;2. актин;3. актомиозин;а также так называемые регуляторные белки:4. тропомиозин;5.

Клеточные мембраны имеют свойства полупроницаемости, то есть некоторые вещества через них проходят, а другие - нет. Вследствие этого те или другие соединения могут накапливаться с какой-то стороны от мембраны, создавая концентрационные градиенты. Так, в клетке и вне ее существенно

различается содержание большинства ионов (табл. 1), участвующих в выполнении многих физиологических процессов.

Таблица 1. Концентрация некоторых ионов внутри мышечного волокна и вне его (ммоль1л)

Кратко перечислим функциональное назначение ионов некоторых металлов, которые обладают наибольшей биологической активностью, которая оказывается внутри клетки (органоїда) или вне ее.

Так, натрий обеспечивает осмотическое давление, регулирует водный обмен между клетками и внеклеточным средой. Ионы натрия участвуют в поддержании кислотно-основного состояния (КОС) в организме. Во многих тканях они участвуют в электрохимических процессах, а также в регуляции функций нуклеиновых кислот, белков. С ними связано трансмембранное транспортировки отдельных веществ.

Немало функций калия совмещены с функциями натрия, но противоположные им. Это наблюдают как в электрохимических процессах, так и в воздействии на ферменты (калий активирует некоторые ферменты гликолиза, а натрий - удручает). Вместе с тем К" выполняет и "свои" функции. Например, его считают одним из регуляторов процессов транскрипции.

Функциональное назначение кальция настолько разнообразно и значимо для большинства органов и систем, регуляции его обмена обеспечивают несколько гормонов. Кальций необходим для секреторной активности практически всех железистых клеток. В большинстве клеток его считают одним из регуляторов внутриклеточных процессов. В то же время поступление в цитоплазму клеток большого количества свободного кальция неблагоприятное, поскольку в таком случае образуется малорастворимое соль фосфата кальция, под влиянием которой прекращается продуцирование и утилизация аденозинтрифосфорной кислоты (АТФ). Поэтому в клетках, где кальций используется для обеспечения функций (например, в мышечной - для сокращения), существует система его депо - саркоплазмами" 1-ный ретикулум (СР). Из него кальций выходит в цитоплазму на относительно короткий период. В русле крови этот ион участвует в обеспечении процессов гемостаза (спинення кровотечения). В крови более половины его концентрации находится в ионизированном состоянии, большая часть остального связана с белками, а меньшая - растворенными в крови веществами (цитратом). Многообразие функций кальция определяет необходимость поддержания его концентрации в крови на уровне 0,25 ммоль (0,5 ммоль1л).

Неорганические анионы (С1-, НСО, Н2Р04 и др.) также выполняют свойственные им функции, о чем речь пойдет в соответствующих разделах. Вследствие значимости для выполнения физиологических процессов указанных неорганических ионов механизмы, которые обеспечивают поступление и выход их через мембранные структуры, будет рассмотрен далее.

Функции белков мембран

Большинство функций мембран (перепонка) обусловлены их белковыми компонентами, которые выполняют роль ионных каналов, насосов, ферментов, рецепторов. Активность функции, которые они проявляют, зависит как от самих белков и их плотности на мембране, так и от ее липидов. Все указанные механизмы изменяются под влиянием сложной системы регуляции.

Транспортные белки

Диффузия.

Переход различных веществ через мембрану зависит от величины их молекулы, заряда, а также растворимости в липидах. Жирорастворимые соединения (СО2,02 и др.) могут относительно легко проникать сквозь мембрану, если возникают условия для их диффузии. Основной механизм, обеспечивающий процесс диффузии - концентрационный градиент вещества: он с большей концентрации перемещается в меньшую.

Но из-за того, что растворимость различных соединений в липидах неодинакова, скорость транспортировки так же разная. Так. растворимость углекислого газа выше, чем кислорода, поэтому он гораздо быстрее проникает через мембраны. А следовательно, он требует меньше концентрационный градиент.

Трансмембранное транспортировки большинства соединений, ионов происходит с помощью соответствующих систем. Если жирорастворимые небольшие полярные молекулы, такие как этанол и мочевина, в отношении легко проходят сквозь липидный слой мембраны, то сахара диффундируют со значительными трудностями.

Заряженные частицы также не могут пройти через липиды мембран. И ведущую роль в обеспечении этих процессов играют белковые структуры. Транспортировка веществ осуществляется с помощью следующих механизмов:

o пассивного;

o первично-активного;

o повторно-активного (совмещенного).

Пассивное транспортировки происходит специальными каналами без затраты энергии путем диффузии по концентрационным градиентом. Для заряженных частиц имеет значение еще и электрохимический градиент. Так, катионы калия, выходящих из клетки, содержащиеся в ней отрицательными анионами.

Активное транспортировки требует специальных белковых структур, что называют насосами, и обязательного использования энергии..

Сочетанное транспортировки обеспечивают белки, транспортирующие одновременно два соединения. Причем этот вид транспортировки может быть однонаправленным, когда оба соединения проникают через мембрану в одном направлении (симпорт), либо разнонаправленным (анти-порт). Соединенное транспортировка также требует энергии ионных насосов, но она не всегда используется в том участке плазматической мембраны, через который оно осуществляется (рис. 4, 5).

Белки-переносчики.

Соединяясь с веществом, что транспортируется и не может самостоятельно пройти через мембрану, переносчик обеспечивает моментальное 4 протягивания" сквозь липидный слой. Таким образом транспортируются ионы, амино - и органические кислоты, моноцукриди, нуклеотиды. Для кож

Рис. 4.

а - боковая подвижность липидов; б - вращательные движения; в - боковая подвижность белков; г - "флип-флоп" липидов; г- "флип-флоп" белков

Рис. 5. в

* - глюкоза (по Ю.П. Болдиревим)

ного из них существуют свои переносчики, плотность которых на мембранах разная и регулируемая. Для функционирования этой системы необходимо соблюдение нескольких условий:

а) вещество, которое транспортируется, пересекает мембрану только вместе с переносчиком;

б) молекула переносчика должна соединяться с молекулой вещества.

Ионные каналы.

наиболее Типичным считается трансмембранное транспортировки ионов, проходящих за одним из разновидностей белков-переносчиков, так называемыми каналами (порами). Важнейшие (и изучены на сегодня) три из них:

1) натриевый;

2) калиевый;

3) кальциевый.

Как правило, канал состоит из трех частей (рис. 6). Первая из них-водная пора, выстланная внутри гидрофильными группами. На внешней ее поверхности содержится участок, осуществляющий разделение ионов, - селективный фильтр. Управляет состоянием канала структура, что находится возле обращенного внутрь края поры и имеет название "ворота".

Ионы в растворе находятся в гидратованной форме, тоб

Рис. 6. Воротами канала управляет хеморецептор. До взаимодействия молекул АХ с рецептором ворота закрыты (а), после связывания с ним они растворяются (б; за Бы.И. Ходоровим)

то связаны с молекулами воды. Это увеличивает эффективные размеры катионов. Открытый канал (раскрытые ворота) позволяет ионам проходить через мембрану, оставаясь в водном окружении. Однако селективная участок настолько узкая, что часть водной оболочки ион теряет. Первый фактор, ограничивающий прохождение катионов каналом, - это размер селективного фильтра: для натриевого канала он составляет 0,3 х 0,5 нм, для калиевого - 0,3 х 0,3 нм. Кальциевый канал большего диаметра (0,65 нм), поэтому сквозь него может проходить не только Са2 а и № Другой фактор, регулирует прохождение ионов, - заряд стенки поры. В рассмотренных катионных каналах стенка пор имеет отрицательный заряд, поэтому через них могут проникать анионы - они отталкиваются.

Регуляцию состояния канала осуществляет воротный механизм. Его положение ("открыто" или "закрыто") в зависимости от места расположения канала на мембранах определяют: электрическим зарядом мембраны и специальными рецепторами, которые взаимодействуют с лигандом (биологически активным соединениям, например медиатором).

Ионные насосы.

Функциональное назначение биологических насосов заключается в поддержании внутри клетки постоянства ионного состава. их еще называют транспортными аденозинтрифосфатазами (АТФазами), ведь они обеспечивают транспорт ионов против концентрационного градиента, для чего нужна энергия АТФ. Наиболее типичные и на сегодня относительно хорошо изучены два насоса.

N0*-, ИС-АТФаза. В плазматической мембране содержится интегральный белок, обеспечивающий соединен антипорт Na+ и К+. Благодаря использованию энергии молекулы АТФ происходит выкачивание трех ионов натрия из клетки и накачки двух ионов калия. К+-насос состоит из двух субъединиц -а-липопротеина и $-гликопротеина (рис. 7).

Ферментативный центр его, что гидролизует АТФ, расположен на а-субъединице, обращенной внутрь клетки. Активация указанного фермента осуществляет натрий на внутренней ее поверхности. Калиесвязывательный центр расположен в той части молекулы, которая ориентирована в внеклеточную среду.

Схематично функцию одного цикла этого насоса можно описать следующим образом. Поступление ионов натрия в открытый сначала "внутренний вход" приводит к переходу фермента в конформационный состояние Е2 и последующего закрытия внутреннего и открытие внешнего канала. Для конформационного состояния Е2 характерно высокое сродство к ионам калия, которые замещают ионы натрия, выталкиваются. Связывание К+ и гидролиз АТФ вызывают возвращение АТ Фазы в восходящий

Рис. 7.

состояние Б,. Затем открывается внутренний канал, и ионы калия выталкиваются внутрь. Новый цикл требует новой молекулы АТФ.

Натриевый насос, его активность и количество не всегда стабильны. На активность насоса влияют синтезированные в клетке вторичные посредники на образец циклического аденозинмонофосфата (цАМФ), производные арахидоновой кислоты, диацилглицерол, а также внешние регуляторы, в частности гормоны. Например, йодсодержащие гормоны щитовидной железы увеличивают активность насоса.

Работа К+-Атфазы - один из наиболее энергозатратных механизмов: в среднем для ее функционирования тратится около 24 % всей энергии клеток, а в нейронах - до 70 %.

Са2+-А ТФаза. Энергетическая емкость этого насоса гораздо выше, чем Na+-, К+-Атфазы: для выкачивания одного Са2+ расходуется две АТФ, тогда как одна АТФ расходуется для транспортировки трех №+ и двух К1. Пусковой механизм этого насоса - сам кальций, малейшее изменение внутриклеточной концентрации которого запускает процесс его откачки.

Эндо - и екзоцитоз.

В некоторых клетках организма человека происходит особый вид транспортировки, что называется ендоцитозом. В следствие эндоцитозу в клетку проникают крупные частицы. Такой путь имеет две основные формы: пиноцитоз и фагоцитоз. С помощью пиноцитоза клетка поглощает небольшие капельки растворенных питательных веществ из внеклеточной жидкости и особенно - молекулы белков. Фагоцитоз обеспечивает проникновение в клетку крупных объектов, таких как бактерии, клетки, частицы разрушенной ткани.

пиноцитоза участвует клеточная мембрана большинства клеток, но особенно характерны эти механизмы для макрофагов, около 3 % мембраны которых постоянно задействованы в образовании пузырьков (везикул). Последние в диаметре достигают около 100-200 нм.

Типичный механизм поглощения белков. На поверхности мембраны клетки, в ее углублениях, размещены рецепторы для связывания с белком. На внутренней поверхности клетки к этому участку примыкает фибрилярный протеин (его называют клотрин) с актомиозиновыми белками. Взаимодействие белка, поглощаемого с рецептором приводит к углублению ямки, а сократительные белки закрывают края, вследствие чего образуется изолированный пузырек, где вместе с соединением, поглощается, оказывается часть внеклеточной жидкости. После этого пузырек отделяется от мембраны и проникает внутрь клетки, как правило, ближе к лизосом, ферменты которых расщепляют белок, что поступил.

Благодаря фагоцитоза клетки (а это в основном тканевые макрофаги и лейкоциты) поглощают субстанции, гораздо больше белковой молекулы (рис. 8).

От начала процесса фагоцитоза происходит связывание рецептора клетки с протеином или полицукридом мембраны бактерии или погибшей клетки. Когда начинается инвагинация мембраны, то все новые и новые участки мембраны фагоцита связываются с лигандами объекта, и постепенно клетка, фагоцитирует, оказывается погруженной в него. Сократительные белки сначала замыкают перешеек, а затем продвигают везикулу вглубь клетки.

Противоположный путь - екзоцитоз - это механизм, обеспечивающий выделение из клетки ряда веществ и процессы секреции. Немало органелл внутри клетки формируют пузырьки, заполненные веществом, которое по

Рис. 8.

нужно вывести из них. Типичными представителями таких соединений являются гормоны и ферменты, секретирующие железы.

Эндо - и екзоцитоз в клетках происходят непрерывно, к тому же у многих из них - достаточно интенсивно. Так, макрофаг всего за 1 час может поглощать в виде пузырьков двойную площадь поверхности своей цитоплазматической мембраны, что, естественно, должно успевать регенерировать.

Рецепторные белки.

Рецептор - это белковый комплекс, который воспринимает сигнал молекулы-передатчика. Рецептор может быть либо самостоятельной структурой, встроенной в мембрану в виде интегрального белка, или частью других функциональных белков, регулируя их активность. Причем до одного и того же химического агента на мембране могут быть несколько рецепторов. И эффект взаимодействия субстрата с рецептором может не всегда быть подобный, а в некоторых случаях даже диаметрально противоположный. Так, при взаимодействии гормона мозгового слоя надпочечников-адреналина (А) по-адренорецептором наблюдают сужение кровеносного сосуда, а с Р-рецептором - расширения.

Белки-ферменты

Немало периферических и отдельных фрагментов интегральных белков выполняют и ферментативные функции. Пример последних - указанные выше мембранные Атфазы, входящие в единую структуру ионных насосов.

Кроме того, белки-ферменты интегрального типа катализируют реакции, что, как правило, полностью перебегают с одной стороны биомембраны. К тому же, присоединив любой субстрат на одном боку, продукты реакции выделяют на противоположном. В таком случае ограниченная проницаемость мембран, обеспечивая пространственное разделение продуктов реакции, создает концентрационные градиенты.

Вторичные посредники.

Клетка имеет сложную систему внутриклеточных регуляторов активности - вторичных посредников. К ним относятся циклические нуклеотиды (цАМФ, цГМФ), кальций, кальций + кальмодулин, продукты гидролиза фосфолипидов (фосфорилированный фосфатыдилинозитол). Однако внутриклеточные системы регуляции ими не ограничиваются, выявлены новые соединения.

Вторичные посредники способствуют многочисленным изменениям в функциях клеток: превращают ферментную активность, стимулируют екзоцитоз, влияют на транскрипцию разных генов.

Все вторичные посредники активно взаимодействуют между собой. Обычно они находятся в клетке в сбалансированном соотношении, но после действия первого регулятора этот баланс нарушается, что и становится сигналом к изменению ее активности. Вторичные посредники влияют также и на чувствительность мембраны клетки к регулятору через регуляцию количества И сродства рецепторов к нему.

К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.

Биохимическая классификация

По биохимической классификации мембранные белки делятся наинтегральные и периферические .

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентовили неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либогликозилфосфатидилинозитола, присоединённых к белку в процессе их посттрансляционной модификации.

Еще один важный момент - способы прикрепления белков к мембране:

1. Связывание с белками, погруженными в бислой. В качестве примеров можно привести F1-часть Н + - АТРазы, которая связывается с Fo-частью, погруженной в мембрану; можно упомянуть также некоторые белки цитоскелета.

2. Связывание с поверхностью бислоя. Это взаимодействие имеет в первую очередь электростатическую природу (например, основный белок миелина) или гидрофобную (например, поверхностно-активные пептиды и, возможно, фосфолипазы). На поверхности некоторых мембранных белков имеются гидрофобные домены, образующиеся благодаря особенностям вторичной или третичной структуры. Указанные поверхностные взаимодействия могут использоваться как дополнение к другим взаимодействиям, например к трансмембранному заякориванию.

3. Связывание с помощью гидрофобного "якоря"; эта структура обычно выявляется как последовательность неполярных аминокислотных остатков (например, у цитохрома 65). Некоторые мембранные белки используют в качестве якоря ковалентно связанные с ними жирные кислоты или фосфолипиды.

4. Трансмембранные белки. Одни из них пересекают мембрану только один раз (например, гликофорин), другие - несколько раз (например, лактозопермеаза; бактериородопсин).

Мембранные липиды

Мембранные липиды - это амфипатические молекулы, самопроизвольно формирующие бислои. Липиды нерастворимы в воде, однако легко растворяются в органических растворителях. В большинстве животных клеток они составляют около 5О% массы плазматической мембраны. В участке липидного бислоя размером 1 х 1 мкм находится приблизительно 5 х 1ОО тыс. молекул липидов. Следовательно плазматическая мембрана небольшой животной клетки содержит примерно 1О липидных молекул. В клеточной мембране присутствуют липиды трех главных типов:


1) фосфолипиды (наиболее распространенный тип);сложные липиды, содержащие глицерин, жирные кислоты, фосфорную кислоту и азотистое соединение.

Типичная молекула фосфолипида имеет полярную голову и два гидрофобных углеводородных хвоста. Длина хвостов варьирует от 14 до 24 атомов углерода в цепи. Один из хвостов содержит, как правило, одну или более цис-двойных связей (ненасыщенный углеводород), тогда как у другого (насыщенный углеводород) двойных связей нет. Каждая двойная связь вызывает появление изгиба в хвосте. Подобные различия в длине хвостов и насыщенности углеводородных цепей важны, поскольку они влияют на текучесть мембраны.

Амфипатические молекулы, находящиеся в водном окружении, обычно агрегируют, при этом гидрофобные хвосты оказываются спрятанными, а гидрофильные головы остаются в контакте с молекулами воды. Агрегация такого типа осуществляется двумя способами: либо путем образования сферических мицелл с хвостами обращеными внутрь, либо путем формирования бимолекулярных пленок, или бислоев, в которых гидрофобные хвосты располагаются между двумя слоями гидрофильных голов.

Два основных фосфолипида, которые присутствуют в плазме - это фосфатидилхолин (лецитин) и сфингомиелин. Синтез фосфолипидов происходит почти во всех тканях, но главным источником фосфолипидов плазмы служит печень. Тонкий кишечник также поставляет в плазму фосфолипиды, а именно лецитин, в составе хиломикрон. Большая часть фосфолипидов, которые попадают в тонкий кишечник (в том числе и в виде комплексов с желчными кислотами), подвергается предварительному гидролизу панкреатической липазой. Этим обьясняется, почему полиненасыщенный лецитин, добавленный в пищу, влияет на содержание линолеата в фосфолипидах плазмы не больше, чем триглицериды кукурузного масла в эквивалентных количествах.

Фосфолипиды являются неотьемлемым компонентом всех клеточных мембран. Между плазмой и эритроцитами постоянно происходит обмен фосфатидилхолином и сфингомиелином. Оба эти фосфолипида присутствуют в плазме в качестве составных компонентов липопротеинов, где они играют ключевую роль, поддерживая в растворимом состоянии неполярные липиды, такие как триглицериды и эфиры холестерина. Это свойство отражает амфипатический характер молекул фосфолипидов - неполярные цепи жирных кислот способны взаимодействовать с липидным окружением, а полярные головы - с водным окружением (Jackson R.L. ea, 1974).

2) Холестерол. Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу.

Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин - компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Кроме того, значительная часть холестерина в кишечной лимфе и в печени тоже этерифицирована.

Холестерин содержится в составе липопротеин ов либо в свободной форме, либо в виде эфиров с длинноцепочечными жирными кислотами. Он синтезируется во многих тканях из ацетил-CoA и выводится из организма желчь ю в виде свободного холестерола или солей желчных кислот. Холестерол является предшественником других стероид ов, а именно кортикостероидов, половых гормонов, желчных кислот и витамина D . Он является соединением, типичным для метаболизма животных, и содержится значительных количествах в продуктах животного происхождения: яичном желтке, мясе, печени и мозге.

Плазматические мембраны эукариот содержат довольно большое количество холестерола - приблизительно одну молекулу на каждую молекулу фосфолипида. Помимо регулирования текучести холестерол увеличивает механическую прочность бислоя. Молекулы холестерола ориентируются в бислое таким образом, чтобы их гидроксильные группы примыкали к полярным головам фосфолипидных молекул

3) гликолипиды

Гликолипиды - это липидные молекулы, принадлежащие к классу олигосахаридсодержащих липидов, которые обнаруживаются только в наружной половине бислоя, а их сахарные группы ориентированы к поверхности клетки.

Гликолипиды это сфинголипиды, у которых к NH группе сфингазина присоединен остаток ЖК, а к кислороду сфингазина присоединены следующие группы: олигосахаридные цепи, Gal, Glc, GalNAc (нейраминовая кислота) – ганглиозиды. Gal или Glc – цереброзиды. сульфосахара Glc-SO3H, Gal-SO3H – сульфолипиды.

Гликолипиды обнаруживаются на поверхности всех плазматических мембран, однако их функция неизвестна. Гликолипиды составляют 5% липидных молекул наружного монослоя и сильно различаются у разных видов и даже в разных тканях одного вида. В животных клетках они синтезируются из сфингозина - длинного аминоспирта - и называются гликосфинголипидами.

Структура их в целом аналогична структуре фосфолипидов, образованных из глицерола. Все гликолипидные молекулы различаются по числу сахарных остатков в их полярных головах. Один из простейших гликолипидов – галактоцереброзид

Как правило именно белки ответственны за функциональную активность мембран. К ним относятся разнообразные ферменты транспортные белки рецепторы каналы поры и. До этого считалось что мембранные белки имеют исключительно β – складчатую структуру вторичная структура белка но данные работы показали что мембраны содержат большое количество α – спиралей. Дальнейшие исследования показали что мембранные белки могут глубоко проникать в липидный бислой или даже пронизывать его и их стабилизация осуществляется за счёт гидрофобных...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 5

Строение и функции мембранных белков

Клеточные мембраны содержат белка от 20 до 80% (по весу). Как правило, именно белки ответственны за функциональную активность мембран. К ним относятся разнообразные ферменты, транспортные белки, рецепторы, каналы, поры и. т.д., которые обеспечивают уникальность функций каждой мембраны. Первые успехи в изучении мембранных белков были достигнуты тогда, когда биохимики научились использовать детергенты для выделения мембранных белков в функционально активной форме. Это были работы по изучению ферментных комплексов внутренней мембраны митохондрий. До этого считалось, что мембранные белки имеют исключительно β – складчатую структуру (вторичная структура белка), но данные работы показали, что мембраны содержат большое количество α – спиралей. Значительно реже встречается β – спираль, которой, однако, придают важное биологическое значение. Дело в том, что на участках, окружённых липидами, β – спираль представляет собой полый цилиндр, в наружной стенке которого сосредоточены неполярные (гидрофобные) аминокислотные остатки, а во внутренней – гидрофильные. Такой цилиндр мог бы образовать в мембране канал, через который свободно проходят ионы и водорастворимые вещества. Дальнейшие исследования показали, что мембранные белки могут глубоко проникать в липидный бислой или даже пронизывать его и их стабилизация осуществляется за счёт гидрофобных взаимодействий. Существует, как минимум, четыре вида расположения белков в мембранах: Первый вид – трансмембранный, когда белок пронизывает всю мембрану, а гидрофобный участок белка имеет α – конфигурацию. Похожее расположение в мембране имеет молекула бактериородопсина из Halobacterium halobium его α – спирали последовательно пересекают бислой; Второй вид – связывание с помощью гидрофобного якоря, когда у белка есть короткий участок, состоящего из гидрофобных остатков аминокислот вблизи карбоксильного конца. Это, так называемый, гидрофобный якорь, который можно удалить с помощью протеолиза, а высвобождённый белок становится водорастворимым. Такое расположение в мембране присуще многим цитохромам. Третий вид – связывание с поверхностью бислоя, когда взаимодействие белков имеет в первую очередь электростатическую природу или гидрофобную природу. Данный тип взаимодействия может использоваться как дополнение к другим взаимодействиям, например, к трансмембранному заякориванию. Четвёртый тип- связывание с белками, погружёнными в бислой, это когда некоторые белки связываются с белками, которые располагаются внутри липидного бислоя. Например, F 1 - часть Н + - АТФазы, которая связывается с F 0 – частью, погружённой в мембрану, а также некоторые белки цитоскелета.

В основе современных представлений о структуре мембранных белков лежит идея о том, что их полипептидная цепь уложена так, чтобы образовалась неполярная, гидрофобная поверхность, контактирующая с неполярной областью липидного бислоя. Полярные домены белковой молекулы могут взаимодействовать с полярными головками липидов на поверхности бислоя. Многие белки являются трансмембранными и пронизывают бислой. Некоторые белки, по – видимому, связаны с мембраной лишь за счёт их взаимодействия с другими белками.

Многие мембранные белки обычно связываются с мембраной с помощью нековалентных взаимодействий. Однако есть белки, которые связаны с липидами ковалентно. Многие белки плазматических мембран относятся к классу гликопротеинов. Углеводные остатки этих белков всегда находятся с наружной стороны плазматической мембраны.

Обычно мембранные белки подразделяют на наружные (периферические) и внутренние (интегральные). При этом критерием служит степень жёсткости обработки, необходимой для извлечения этих белков из мембраны. Периферические белки высвобождаются при промывании мембран буферными растворами с низкой ионной силой, низким или, наоборот, с высоким значением рН и в присутствии хелатирующих агентов (например, ЭДТА), связывающих двухвалентные катионы. Часто бывает, что очень трудно отличить периферические мембранные белки от белков, связавшихся с мембраной в процессе выделения.

Для высвобождения интегральных мембранных белков необходимо использовать детергенты или даже органические растворители.

Многие мембранные белки эукариот и прокариот ковалентно связаны с липидами, которые присоединяются к полипептиду после трансляции.

Мембранные белки, ковалентно связанные с липидами

  1. Прокариоты
    • Липопротеины наружной мембраны бактерий E . coli
    • Пенициллаза
    • Цитохромная субъединица реакционного центра
  2. Эукариоты

(А) Белки, к которым присоединена миристиновая кислота

  1. Каталитическая единица цАМФ – протеинкиназы
    1. НАДФН – цитохром в 5 – редуктаза
      1. α – Субъединица гуаниннуклеотидсвязывающего белка

(Б) Белки, к которым присоединена пальмитиновая кислота

  1. Гликопротеин G вируса везикулярного стоматита
  2. НА – Гликопротеин вируса гриппа
  3. Трансферриновый рецептор
  4. Родопсин
  5. Анкирин

(В) Белки с гликозилфосфатидилинозитольным якорем

  1. Гликопротеин Thy – 1
  2. Ацетилхолинэстераза
  3. Щелочная фосфатаза

4. Адгезивная молекула нервных клеток

В некоторых случаях эти липиды играют роль гидрофобного якоря, с помощью которого белок прикрепляется к мембране. В других случаях липиды, вероятно, выполняют функцию помощника при миграции белка в соответствующую область клетки или (как в случае белков оболочки вирусов) в слиянии мембран.

У прокариот наиболее полно охарактеризован белок липопротеин Брауна – основной липопротеин наружной мембраны E . coli . Зрелая форма этого белка содержит ацилглицерол, который связан тиоэфирной связью с N – концевым цистеином. Кроме того, N – концевая аминокислота связана с жирной кислотой амидной связью. Мембраносвязанная форма пенициллазы прикрепляется к цитоплазматической мембране с помощью N – концевого ацилглицерола аналогично липопротеинам мембраны.

Мембранные белки эукариот ковалентно связанные с липидами, как показано в таблице, их можно разделить на три класса. Белки первых двух классов, по – видимому, локализованы в основном на цитоплазматической поверхности плазматической мембраны, а белки третьего класса на наружной поверхности.

Существуют мембранные белки, которые ковалентно связаны с углеводами. К ним относятся поверхностные белки клеток в основном, выполняющих функции транспорта и рецепции. До сих пор неясно, в чём тут дело. Возможно, это связано с тем, что белки нужно сортировать при направлении их к плазматической мембране. Сахарные остатки могут защищать белок от протеолиза или участвовать в узнавании или адгезии. Поэтому сахарные остатки в мембранных гликопротеинах локализованы исключительно на наружной стороне мембраны.

Можно выделить два основных класса олигосахаридных структур мембранных гликопротеинов: 1) N – гликозидные олигосахариды, связанные с белками через амидную группу аспаргина; 2) О-гликозидные олигосахариды, связанные через гидроксильные группы серина и треонина. Данный класс олигосахаридов состоит из трёх подклассов.

  1. Простой или обогащённый маннозой комплекс, в котором олигосахарид содержит маннозу и N – ацетилглюкозамин.
  2. Нормальный комплекс, в котором обогащённый маннозой кор имеет дополнительные боковые ветви, содержащие другие сахаридные остатки, например сиаловую кислоту.
  3. Большой комплекс, который связан с анионным переносчиком мембраны эритроцитов

Большинство олигосахаридов мембранных гликопротеинов принадлежат к подклассу 1 или2.

Мембранные белки бактерий

Как уже отмечалось выше, белки в цитоплазматической мембране составляют около 50% её поверхности. Примерно 10% мембраны образовано прочно связанными белково–липидными комплексами. Молекула любого встроенного в мембрану белка окружена 45 – 130 и более липидными молекулами. Около половины свободных липидов связано с периферическими белками мембраны.

Белковый состав цитоплазматической мембраны бактерий более разнообразен, чем липидный. Так, в цитоплазматической мембране E . coli K 12 обнаружено около 120 различных белков. В зависимости от ориентации в мембране и характера связи с липидным бислоем, как уже отмечалось выше, белки делят на интегральные и периферические. К периферическим белкам бактерий можно отнести ряд ферментов таких как, НАДН – дегидрогеназа, малатдегидрогеназа и др., а также некоторые белки, которые входят в состав АТФазного комплекса. Этот комплекс представляет собой группу определённым образом расположенных белковых субъединиц, контактирующих с цитоплазмой, периплазматическим пространством и образующих в мембране канал, через который осуществляется переход протона. Участок комплекса, обозначаемый F 1 , погружён в цитоплазму, а и с – компоненты участка F 0 – гидрофобными сторонами молекул погружены в мембрану. Субъединица b частично погружена в мембрану своей гидрофобной частью и осуществляет связь мембранной и цитоплазматической частей ферментного комплекса, а также связь синтеза АТФ в участке F 1 с протонным потенциалом в мембране. Субъединицы а, b и с обеспечивают протонный канал. Другие компоненты комплекса обеспечивают его структурную и функциональную целостность.

К интегральным белкам E . coli , которые для проявления энзиматической активности необходимы липиды, можно отнести сукцинатдегидрогеназу, цитохром b . Очень интересными свойствами обладает антибиотики грамицидин А, аламетицин, амфотерицин и нистацин. Они при взаимодействии с мембраной бактерий становятся интегральными белками (антибиотики являются полипептидами и макроциклами).

Грамицидин А – это гидрофобный пептид, состоящий из 15 L - D -аминокислот. При встраивании в мембрану он образует каналы, которые пропускают одновалентные катионы. Этот канал, который образует грамицидин А – охарактеризован наиболее полно. Канал образован двумя молекулами грамицидина А. В результате чередования L - и D - аминокислот образуется спираль, в которой боковые цепи располагаются снаружи, а карбоксильные группы остова – внутри канала. Этот тип спирали, не встречается больше ни в каких белках и образуется из – за необычного чередования стереоизомеров аминокислот в грамицидине А. Грамицидиновый канал, как уже отмечалось выше, катионселективен. Небольшие неорганические и органические катионы проходят через него, в тоже время проницаемость по Cl - равна нулю.

Аламетицин – это пептидный антибиотик из 20 аминокислотных остатков, способный образовывать в мембране электовозбудимые каналы. Аминокислотная последовательность аламетицина включает необычные остатки –α –аминомасляную кислоту и L –фенилаланин. При связывании с мембраной в отличие от грамицидина А он образует пору. Она намного по размеру меньше, чем канал, который образует грамицидин А. Прежде всего это связано с тем, что пространство вокруг α – спирали слишком мало, чтобы через него мог пройти ион.

Марколидные антибиотки, такие как, нистатин и амфотерицин связываются с холестерином и образуют каналы. Каналы образуют 8 –10 молекул этих полиеновых антибиотиков, через которые, правда, с невысокими скоростями проникают ионы.

Другие похожие работы, которые могут вас заинтересовать.вшм>

21572. СТРОЕНИЕ И ФУНКЦИИ БЕЛКОВ 227.74 KB
Содержание белков в организме человека выше чем содержание липидов углеводов. Преобладание в тканях белков по сравнению с другими веществами выявляется при расчёте содержания белков на сухую массу тканей. Содержание белков в различных тканях колеблется в определённом интервале.
17723. Мозжечек, строение и функции 22.22 KB
3 Общее строение головного мозга. В нервной системе выделяют также центральную часть ЦНС которая представлена головным и спинным мозгом и периферическую часть в которую входят нервы нервные клетки нервные узлы ганглии и сплетения топографически лежащие вне спинного и головного мозга. Объектом исследования является анатомия головного мозга. Данная цель предмет и объект подразумевают постановку и решение следующих задач: описать общий план строения головного мозга изучить анатомическое строение мозжечка выделить...
5955. Органы растений: их функции, строение и метаморфозы. 16.94 KB
Органы цветка являются видоизмененными листьями: покровные листья формируют чашелистики и лепестки а спорообразующие листья дают начало тычинкам и пестикам. Побег включает: а стебель б листья в вегетативные почки г цветки д плоды. Стеблем называется вегетативный орган растения который выполняет многочисленные функции: несёт листья или тяжелую крону из ветвей и листьев; связывает корни и листья; на нем образуются цветки; по нему передвигается вода с минеральными веществами и органическими соединениями; молодые стебли...
5067. Гладкие мышцы. Строение, функции, механизм сокращения 134.79 KB
Мышцы или мускулы от лат. Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Гладкие мышцы являются составной частью некоторых внутренних органов и участвуют в обеспечении функции выполняемые этими органами.
6233. Строение и функции ядра. Морфология и химический состав ядра 10.22 KB
От цитоплазмы ядра обычно отделяются четкой границей. Бактерии и синезеленые водоросли не имеют сформированного ядра: их ядро лишено ядрышка не отделено от цитоплазмы отчетливо выраженной ядерной мембраной и носит название нуклеоид. Форма ядра.
9495. Классификация, характеристика ассортимента пушно-мехового сырья и пушно-мехового полуфабриката, строение пушно-меховой шкуры, строение волоса и разновидность его форм, технология изготовления пушнины 1.05 MB
Меховые пластины полосы определенной формы сшитые из подобранных выделанных шкурок и предназначенные для раскроя на детали меховых изделий. К зимним видам пушного сырья относятся шкурки и шкуры пушных зверей добыча которых производится преимущественно в зимнее время когда качество шкурок особенно высоко. СТРОЕНИЕ И ХИМИЧЕСКИЙ СОСТАВ ШКУРОК ПУШНОМЕХОВОГО и овчинношубного СЫРЬЯ ПОНЯТИЕ О ТОПОГРАФИИ ШКУРКИ Шкуркой называют наружный покров животного отделенный от его тушки и состоящий из кожной ткани и волосяного покрова. У...
8011. Свойства мембранных липидов 10.13 KB
Некоторые липиды способствуют стабилизации сильно искривлённых участков мембраны образованию контакта между мембранами или связыванию определённых белков поскольку форма этих молекул благоприятствует нужной упаковке бислоя на соответствующих участках мембраны. Под жидкостным состоянием понимают способность фосфолипидных молекул к вращению и латеральному перемещению в соответствующем лепестке мембраны. Они вытянуты и ориентированы перпендикулярно плоскости мембраны. В состоянии жидкого кристалла молекулы жирных кислот подвижны но...
8014. Химический состав мембранных липидов 10.81 KB
Прежде всего это связано с множеством функций которые выполняют липиды в мембранах. Фосфатидная кислота в свободном виде содержится в мембранах бактерий в небольшом количестве обычно же к ней присоединены остатки спиртов аминокислот и др. Эти липиды являются сложными эфирами жирных кислот и глицерола и широко представлены во многих мембранах эукариотических и прокариотических клеток за исключением архебактерий. Они содержатся в большом количестве во внутренней мембране митохондрий в мембране хлоропластов и в некоторых бактериальных...
21479. ОБМЕН БЕЛКОВ 150.03 KB
Различают три вида азотистого баланса: азотистое равновесие положительный азотистый баланс отрицательный азотистый баланс При положительном азотистом балансе поступление азота преобладает над его выделением. При заболевании почек возможен ложный положительный азотистый баланс при котором происходит задержка в организме конечных продуктов азотистого обмена. При отрицательном азотистом балансе преобладает выделение азота над его поступлением. Это состояние возможно при таких заболеваниях как туберкулез ревматизм онкологические...
15073. Рассмотрение мембранных (ионоселективных) электродов с различного рода мембранами 127.48 KB
Для этого существуют разнообразные ионоселективные электроды главной особенностью которых является так называемая селективность к определенному виду ионов. Электроды с жидкой и пленочной мембраной Жидкие мембраны это растворы в органических растворителях ионообменных веществ жидкие катиониты или аниониты или нейтральных хелатов отделенные от водных растворов нейтральными пористыми перегородками полимерными стеклянными или др. В настоящее время промышленность выпускает пленочные ионоселективные электроды на катионы N К NH4 Са2...