Проводящий контур движется с постоянной. Индукция магнитного поля равномерно увеличивается

ЭДС - это аббревиатура трех слов: электродвижущая сила. ЭДС индукции () появляется в проводящем теле, которое находится в переменном магнитном поле. Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции.

Закон Фарадея для электромагнитной индукции

Основным законом, который используют при расчетах, связанных с электромагнитной индукцией является закон Фарадея. Он говорит о том, что электродвижущая сила электромагнитной индукции в контуре равна по величине и противоположна по знаку скорости изменения магнитного потока () сквозь поверхность, которую ограничивает рассматриваемый контур:

Закон Фарадея (1) записан для системы СИ. Надо учитывать, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки. Если изменение потока происходит равномерно, то ЭДС индукции находят как:

Магнитный поток, который охватывает проводящий контур, может изменяться в связи с разными причинами. Это может быть и изменяющееся во времени магнитное поле и деформация самого контура, и перемещение контура в поле. Полная производная от магнитного потока по времени учитывает действие всех причин.

ЭДС индукции в движущемся проводнике

Допустим, что проводящий контур перемещается в постоянном магнитном поле. ЭДС индукции возникает во всех частях контура, которые пересекают силовые линии магнитного поля. При этом, результирующая ЭДС, появляющаяся в контуре будет равна алгебраической сумме ЭДС каждого участка. Возникновение ЭДС в рассматриваемом случае объясняют тем, что на любой свободный заряд, который движется вместе с проводником в магнитном поле, будет действовать сила Лоренца. При воздействии сил Лоренца заряды движутся и образуют в замкнутом проводнике ток индукции.

Рассмотри случай, когда в однородном магнитном поле находится прямоугольная проводящая рамка (рис.1). Одна сторона рамки может двигаться. Длина этой стороны равна l. Это и будет наш движущийся проводник. Определим, как можно вычислить ЭДС индукции, в нашем проводнике, если он перемещается со скоростью v. Величина индукции магнитного поля равна B. Плоскость рамки перпендикулярна вектору магнитной индукции. Выполняется условие .

ЭДС индукции в рассматриваемом нами контуре будет равна ЭДС, которая возникает только в подвижной его части. В стационарных частях контура в постоянном магнитном поле индукции нет.

Для нахождения ЭДС индукции в рамке воспользуемся основным законом (1). Но для начала определимся с магнитным потоком. По определению поток магнитной индукции равен:

где , так как по условию плоскость рамки перпендикулярна направлению вектора индукции поля, следовательно, нормаль к рамке и вектор индукции параллельны. Площадь, которую ограничивает рамка, выразим следующим образом:

где - расстояние, на которое перемещается движущийся проводник. Подставим выражение (2), с учетом (3) в закон Фарадея, получим:

где v - скорость движения подвижной стороны рамки по оси X.

Если угол между направлением вектора магнитной индукции () и вектором скорости движения проводника () составляет угол , то модуль ЭДС в проводнике можно вычислить при помощи формулы:

Примеры решения задач

ПРИМЕР 1

Задание Получите выражение для определения модуля ЭДС индукции в проводнике, длиной l, который движется в однородном магнитном поле, используя выражение для силы Лоренца. Проводник на рис.2 движется с постоянной скоростью , параллельно самому себе. Вектор перпендикулярен проводнику и составляет угол с направлением .

Решение Рассмотрим силу, с которой магнитное поле действует на заряженную частицу, движущуюся со скоростью , мы получим:

Работа силы Лоренца на пути l составит:

ЭДС индукции можно определить как работу по перемещению единичного положительного заряда:

Ответ

ПРИМЕР 2

Задание Изменение магнитного потока через контур проводника, имеющего сопротивление Ом за время равное с, составило величину Вб. Какова сила тока при этом в проводнике, если изменение магнитного потока можно считать равномерным?
Решение При равномерном изменении магнитного потока основной закон электромагнитной индукции можно записать как:

Вариант 3

1. Проводящий контур движется с постоянной скоростью в постоянном однородном магнитном поле так, что вектор магнитной индукции перпендикулярен плоскости контура (рис. 39). Вектор скорости контура перпендикулярен вектору. В этом случае с течением времени ЭДС индукции в контуре

А. увеличивается; Б. уменьшается;

В. постоянна и не равна нулю;Г. равна нулю

2. Чему равна ЭДС самоиндукции в катушке индуктивностью L = 3 Гн при равномерном уменьшении силы тока от 5 А до 1 А за 2 секунды?

А. 6 В; Б. 9 В; В. 24 В; Г. 36 В.

3. На рисунке 40 представлен график зависимости магнитного потока через проводящий неподвижный контур от времени. В каком интервале времени модуль ЭДС индукции в контуре равен нулю?

А. 0 – 1 с; Б. 1 – 3 с; В . 0 – 2 с; Г. 3 – 4 с.

4. Катушка индуктивностью 1 Гнвключается на напряжение 20 В. Определить время, за ĸᴏᴛᴏᴩᴏᴇ сила тока в ней достигает 30 А.

5. Проводник с активной длиной 15 см движется со скоростью 10 м/с перпендикулярно линиям индукции однородного магнитного поля с индукцией 2 Тл. Какая сила тока возникает в проводнике, если его замкнуть накоротко? Сопротивление цепи 0,5 Ом.

Вариант 4

1. Магнитный поток в 1 Вб может быть выражен в СИ как

А. 1 Н·м²; Б. 1 Тл·м²; В. 1 Тл/с; Г. 1 Тл/м²

2. Проводящий круговой контур перемещается поступательно с постоянной скоростью в направлении, указанном на рисунке 41, в поле прямолинœейного проводника с током. Об индукционном токе в контуре можно сказать, что …

А. он направлен по часовой стрелке;

Б. он направлен против часовой стрелки;

В. он возникать не будет;

Г. его направление зависит от модуля индукции магнитного поля.

А. 0,5 Гн; Б. 2 Гн; В. 18 Гн;

Г.

4. Какова индуктивность витка проволоки, если при силе тока 6 А создается магнитный поток 12·10 – 3 Вб? Зависит ли индуктивность витка от силы тока в нем?

5. Какой заряд пройдет через поперечное сечение витка, сопротивление которого 0,05 Ом при уменьшении магнитного потока внутри витка на 15 мВб?

Вариант 5

1. Проволочная рамка находится в однородном магнитном поле.

а) Рамку поворачивают вокруг одной из ее сторон.

б) Рамку двигают поперек линий индукции магнитного поля.

в) Рамку двигают вдоль линий индукции магнитного поля.

Электрический ток возникает

А. только в случае а; Б. только в случае б;

В. только в случае в; Г. во всœех случаях.

2. На рисунке 42 представлен график изменения силы тока в катушке индуктивностью 6 Гн при размыкании цепи. Оцените среднее значение ЭДС самоиндукции в промежуток времени 1 – 2 с.

А. 36 В; Б. 18 В; В. 9 В; Г. 3 В.

3. Чему равна индуктивность проволочной рамки, если при силе тока I = 3 А в рамке возникает магнитный поток Ф = 6 Вб?

А. 0,5 Гн; Б. 2 Гн; В. 18 Гн; Г. среди перечисленных ответов нет правильного.

4. Какова индукция магнитного поля, если в проводнике с длиной активной части 50 см, перемещающаяся со скоростью 10 м/с перпендикулярно вектору индукции, возбуждалась ЭДС 1,5 В?

5. Алюминиевое кольцо расположено в однородном магнитном поле так, что его плоскость перпендикулярна вектору магнитной индукции. Диаметр кольца 25 см, толщина провода кольца 2 мм. Определить скорость изменения магнитной индукции со временем, если при этом в кольце возникает индукционный ток 12 А.Удельное сопротивление алюминия 2,8·10 -8 Ом·м.

Вариант 6

1. Постоянный прямой магнит падает сквозь алюминиевое кольцо. Модуль ускорения падения магнита

А. в начале пролета кольца меньше g, в конце больше g;

Б. равен g; В. больше g; Г. меньше g.

2. На рисунке 43 представлена электрическая схема. В какой лампе после замыкания ключа сила тока позже всœего достигнет своего максимального значения?

А. 1 Б. 2 В. 3 Г. Во всœех одновременно.

3. Индуктивность L замкнутого проводящего контура определяется формулой

А. L = Ф/I Б. L = Ф·I

В. L = I/Ф Г. L = ∆ I/Ф

4. Найдите ЭДС индукции на концах крыльев самолета (размах крыльев 36,5 м), летящего горизонтально со скоростью 900 км/ч, если вертикальная составляющая вектора индукции магнитного поля Земли 5·10 – 3 Тл.

5. Два металлических стержня расположены вертикально и замкнуты вверху проводником. По этим стержням без трения и нарушения контакта скользит перемычка длиной 0,5 см и массой 1 ᴦ. Вся система находится в однородном магнитном поле с индукцией 0,01 Тл, перпендикулярной плоскости рамки. Установившаяся скорость 1 м/с. Найти сопротивление перемычки.

ПРАКТИЧЕСКАЯ РАБОТА № 5. «Переменный ток»

Вариант 1

1. Какая зависимость напряжения от времени t соответствует гармоническим колебаниям?

А= ? Б=?

2. На графике (рис.44) приведена зависимость силы тока в цепи от времени. Чему равен период колебаний тока?

А. 0,5с; Б. 2 с; В. 1 с; Г. 3 с.

3. Период свободных колебаний тока в электрическом контуре равен Т. В некоторый момент энергия электрического поля в конденсаторе достигает максимума. Через какое минимальное время после этого достигнет максимума энергия магнитного поля в катушке?

5. Напишите уравнение гармонических колебаний напряжения на клеммах электрической цепи, если амплитуда колебаний 150 В, период колебаний 0,01 с, а начальная фаза равна нулю.

6. Ток в колебательном контуре изменяется со временем по закону i =0,01соs1000t. Найти индуктивность контура, зная, что емкость его конденсатора 2·10 – 5 Ф.

Вариант 2

1. Период колебаний равен 1 мс. Частота этих колебаний равна

А . 10 Гц; Б. 1 кГц; В. 10 кГц; Г. 1МГц

2. В случае если электроемкость конденсатора в электрическом колебательном контуре уменьшится в 9 раз, то частота колебаний

А. увеличится в 9 раз; Б. увеличится в 3 раза;

В. уменьшится в 9 раз; Г. уменьшится в 3 раза.

3. В цепь переменного тока включены последовательно резистор, конденсатор и катушка. Амплитуда колебаний напряжения на резисторе 3 В, на конденсаторе 5 В, на катушке 1 В. Чему равна амплитуда колебаний на участке цепи, состоящей из этих трех элементов?

А. 3 В; Б. 5 В; В. 5,7 В; Г. 9 В.

4. По графику, изображенному на рисунке 45, определите амплитуду напряжения и период колебания. Запишите уравнение мгновенного значения напряжения.

7. В колебательном контуре зависимость силы тока от времени описывается уравнением i = 0,06sin10 6 πt. Определить частоту электромагнитных колебаний и индуктивность катушки, если максимальная энергия магнитного поля 1,8·10 – 4 Дж.

Вариант 3

1. Модуль наибольшего значения величины, изменяющейся по гармоническому закону, принято называть

А. периодом; Б. амплитудой;

В. частотой; Г. фазой.

2. Изменение заряда конденсатора в колебательном контуре происходит по закону q = 3соs5t (q измеряется в микрокулонах, t – в секундах).

Амплитуда колебаний заряда равна

А. 3 мкКл; Б. 5 мкКл;

В . 6 мкКл; Г. 9 мкКл.

3. На графике (рис. 46)приведена зависимость силы тока в цепи от времени. Чему равно действующее значение силы тока?

4. Значение силы тока, измеренное в амперах, задано уравнением i = 0,28sin50πt, где t выражено в секундах. Определите амплитуду силы тока, частоту и период.

5. Напряжение на обкладках конденсатора в колебательном контуре изменяется по закону u = 50соs10 4 πt. Емкость конденсатора 0,9 мкФ. Найти индуктивность контура и закон изменения со временем силы тока в цепи.

Вариант 4

1. Какое из приведенных ниже выражений определяет индуктивное сопротивление катушки индуктивностью L в цепи переменного тока частотой ω ?

2. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. В случае если с течением времени начальный заряд, сообщенный конденсатору, уменьшился в два раза, то полная энергия, запасенная в конденсаторе,

А. уменьшилась в два раза;

Б. увеличилась в два раза;

В. уменьшилась в 4 раза;

Г. не изменилась.

3. Период свободных колебаний в контуре с ростом электроемкости

А. увеличивается;

Б. уменьшается;

В. не изменяется;

Г. всœегда равен нулю.

4. По графику, изображенному на рисунке 47, определите амплитуду напряжения, период и значение напряжения для фазы π/3 рад.

5. Зависимость силы тока от времени в колебательном контуре определяется уравнением i = 0,02sin500πt. Индуктивность контура 0,1 Гн. Определить период электромагнитных колебаний, емкость контура, максимальную энергию магнитного и электрического полей.

Вариант 5

1. Какое выражение определяет емкостное сопротивление конденсатора электроемкость С в цепи переменного тока частотой ω ?

2. Отношение действующего значения гармонического переменного тока к его амплитуде равно

А. 0; Б. 1/; В. 2; Г. 1/2.

3. Изменение заряда конденсатора в колебательном контуре происходит по закону q = 10 – 4 соs10πt (Кл). Чему равен период электромагнитных колебаний в контуре (время измеряется в секундах)?

А. 0,2 с; Б. π/5 с; В. 0,1π с; Г. 0,1 с.

4. Конденсатор емкостью С = 5 мкФ подключен к цепи переменного тока с U m = 95,5 В и частотой ν = 1 кГц (рис. 48). Какую силу тока покажет амперметр, включенный в сеть? Сопротивлением амперметра можно пренебречь.

5. Заряд на обкладках конденсатора колебательного контура изменяется по закону q = 3·10 – 7 соs800πt. Индуктивность контура 2 Гн. Пренебрегая активным сопротивлением, найти электроемкость конденсатора и максимальные значения энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Вариант 6

1. Каков период свободных колебаний в электрической цепи из конденсатора электроемкостью С и катушки индуктивностью L ?

2. Найдите максимальное значение переменного напряжения, если действующее значение U = 100 В.

А. 70,7 В; Б. 141,4 В; В. 200 В; Г. 50 В.

А. Выделяет из электромагнитной волны модулирующий сигнал;

Б. Усиливает сигнал одной избранной волны;

В. Выделяет из всœех электромагнитных волн совпадающие по частоте собственным колебаниям;

Г.

4. Катушка индуктивностью L = 50 мГн присоединœена к генератору переменного тока с U m = 44,4 В и частотой ν = 1 кГц. Какую силу тока покажет амперметр, включенный в цепь?

5. Напряжение на обкладках конденсатора в колебательном контуре меняется по закону u = 100соs10 4 πt. Электроемкость конденсатора 0,9 мкФ (рис. 49). Найти индуктивность контура и максимальное значение энергии магнитного поля катушки.

ПРАКТИЧЕСКАЯ РАБОТА №6. «Излучение и прием электромагнитных волн радио- и СВЧ-диапазона»

Вариант 1

1. Как вдали от источника интенсивность электромагнитного излучения зависит от расстояния до него?

А. Прямо пропорционально;

Б. Обратно пропорционально;

В. Пропорционально квадрату расстояния;

Г. Обратно пропорционально квадрату расстояния.

2. Частота инфракрасного излучения меньше частот всœех перечисленных ниже, кроме…

А. видимого света;

Б. радиоволн;

В. ультрафиолетового излучения;

Г. рентгеновского излучения.

3. Источником электромагнитных волн является…

А. постоянный ток;

Б. неподвижный заряд;

В. любая ускоренно движущаяся частица;

Г. любая ускоренно движущаяся заряженная частица.

4. Напряженность электрического поля бегущей электромагнитной волны в СИ задана уравнением Е = 5·10² sin(3·10 6 π(x – 3·10 8 t х.

5. Высота излучающей антенны телœецентра над уровнем Земли 300 м, а высота приемной антенны 10 м. На каком предельном расстоянии от передатчика можно вести прием?

Вариант 2

1. Какие из перечисленных ниже волн не являются поперечными?

А. Инфракрасные;

Б. Видимые;

В. Звуковые;

Г. Радиоволны.

2. Частота излучения желтого света ν = 5,14·10 14 Гц. Найдите длину волны желтого света.

А. 580 нм; Б. 575 нм; В. 570 нм; Г. 565 нм.

3. Напряженность поля бегущей электромагнитной волны в СИ задана уравнением Е = 10²sin(4·10 6 π(2·10 8 t + x )). Найдите амплитуду, частоту волны и скорость ее распространения вдоль оси x.

4. Радиолокатор работает на волне 15 см и испускает импульсы с частотой 4 кГц. Длительность каждого импульса 2 мкс. Какова наибольшая дальность обнаружения цели? Сколько колебаний содержится в одном импульсе?

Вариант 3

1. Существует ли такое движение электрического заряда, при котором он не излучает электромагнитные волны?

А. Такого движения нет.

Б. Существует, это равномерное прямолинœейное движение.

В. Существует, это равномерное движение по окружности.

Г. Существует, это прямолинœейное равноускоренное движение.

2. Плотность потока электромагнитного излучения равна 0,03 Вт/см². В единицах Вт/м² она будет равна

А. 0,0003; Б. 3; В. 30; Г. 300.

3. Какую функцию выполняет колебательный контур радиоприемника?

А . Выделяет из электромагнитной волны модулирующий сигнал.

Б.

В.

Г. Принимает всœе электромагнитные волны.

i = 0,5соs 8·10 5 πt. Найти длину излучаемой волны.

5. Какова длина волны электромагнитного излучения колебательного контура, если конденсатор имеет емкость 2 пФ, скорость изменения силы тока в катушке индуктивности равна 4 А/с, а возникающая ЭДС индукции составляет 0,04 В?

Вариант 4

1. В каких направлениях совершаются колебания в поперечной волне?

А. Во всœех направлениях.

Б. Только по направлению распространения волны.

В. Только перпендикулярно направлению распространения волны.

Г. По направлению распространения волны и перпендикулярно этому направлению.

2. Радиоприемник настроен на длину волны 100 м. Собственная частота входного колебательного контура равна

А. 3 Гц; Б. 300 кГц; В. 3 кГц; Г. 3 МГц.

3. Какую функцию выполняет антенна радиоприемника?

А. Выделяет из электромагнитной волны модулирующий сигнал.

Б. Усиливает сигнал одной избранной волны.

В. Выделяет из всœех электромагнитных волн совпадающие по частоте собственным колебаниям.

Г. Принимает всœе электромагнитные волны.

4. Электромагнитные волны распространяются в некоторой однородной среде со скоростью 2·10 8 м/с. Какую длину волны имеют электромагнитные колебания в этой среде, если их частота в вакууме

6. При изменении тока в катушке индуктивности на величину 1 А за время 0,6 с в ней индуцируется ЭДС 0,2 мВ. Какую длину будет иметь радиоволна, излучаемая генератором, колебательный контур которого состоит из этой катушки и конденсатора емкостью 14,1нФ?

Вариант 5

1. При распространении в вакууме электромагнитной волны…

А. происходит только перенос энергии;

Б. происходит только перенос импульса;

В. происходит перенос и энергии, и импульса;

Г. не происходит переноса ни энергии, ни импульса.

2. Как изменится интенсивность излучения электромагнитных волн при одинаковой амплитуде их колебаний в вибраторе, если частоту колебаний увеличить в 2 раза?

А. Не изменится.

Б. Увеличится в 2 раза.

В. Увеличится в 4 раза.

Г. Увеличится в 16 раз.

3. Расположите перечисленные ниже виды электромагнитных волн в порядке увеличения длины волны:

А. видимый свет;

Б. радиоволны;

В. рентгеновское излучение;

Г. инфракрасное излучение.

4. Сила тока в открытом колебательном контуре изменяется в зависимости от времени по закону i = 0,8sin4·10 5 πt. Найти длину излучаемой волны.

5. Сколько электромагнитных колебаний с длиной волны 375 м происходит в течение одного периода звука с частотой 500 Гц, произносимого перед магнитофоном передающей станции?

Вариант 6

1. Рассмотрим два случая движения электрона в вакууме:

а) Электрон движется равномерно и прямолинœейно.

б) Электрон движется равноускоренно и прямолинœейно.

В каких случаях происходит излучение электромагнитных волн?

А. а. Б. б. В. а) и б). Г. Ни а), ни б).

2. Какое из перечисленных устройств не является необходимым в радиопередатчике?

А. Антенна. Б. Колебательный контур.

В. Детектор. Г. Генератор незатухающих колебаний.

3. Среди волн длинного, короткого и ультракороткого диапазона наибольшую скорость распространения в вакууме имеют волны…

А. длинного диапазона;

Б. короткого диапазона;

В. ультракороткого диапазона;

Г. скорости распространения всœех волн одинаковы.

4. Радиолокационная станция посылает в некоторую среду электромагнитные волны длиной 10 см при частоте 2,25 ГГц. Чему равна скорость волн в этой среде и какую будут иметь длину электромагнитные волны в вакууме?

5. На каком предельном расстоянии может быть обнаружена цель на поверхности моря корабельным радиолокатором, расположенным на высоте 8 м над уровнем моря? Каким должен быть минимальный промежуток времени между сосœедними импульсами такого локатора?

Что плоскость кольца перпендикулярна линиям магнитной индукции. Индукция магнитного поля равномерно увеличивается. Индукционный ток в кольце А. увеличивается; Б. уменьшается;

В. равен нулю; Г. постоянен.


  1. В медном кольце, плоскость которого перпендикулярна линиям магнитной индукции внешнего магнитного поля, течет индукционный ток, направление которого показано на рис. 38. Вектор направлен перпендикулярно плоскости рисунка от читателя. Модуль в этом случае
А. увеличивается; Б. уменьшается;

Г. всегда равен нулю.


  1. По графику, изображенному на рисунке 47, определите амплитуду напряжения, период и значение напряжения для фазы π/3 рад.

  1. Зависимость силы тока от времени в колебательном контуре определяется уравнением i = 0,02sin500πt. Индуктивность контура 0,1 Гн. Определить период электромагнитных колебаний, емкость контура, максимальную энергию магнитного и электрического полей.

Вариант 5


  1. Какое из приведенных ниже выражений определяет емкостное сопротивление конденсатора электроемкость С в цепи переменного тока частотой ω ?
А. ; Б. ; В. ; Г. ωС.

  1. Отношение действующего значения гармонического переменного тока к его амплитуде равно
А. ; Б. 1/ ; В. 2; Г. 1/2.

  1. Изменение заряда конденсатора в колебательном контуре происходит по закону q = 10 – 4 соs10πt (Кл). Чему равен период электромагнитных колебаний в контуре (время измеряется в секундах)?
А. 0,2 с; Б. π/5 с; В. 0,1π с; Г. 0,1 с.

  1. Конденсатор емкостью С = 5 мкФ подключен к цепи переменного тока с U m = 95,5 В и частотой ν = 1 кГц (рис. 48). Какую силу тока покажет амперметр, включенный в сеть? Сопротивлением амперметра можно пренебречь.

  1. Заряд на обкладках конденсатора колебательного контура изменяется по закону q = 3·10 – 7 соs800πt. Индуктивность контура 2 Гн. Пренебрегая активным сопротивлением, найти электроемкость конденсатора и максимальные значения энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Вариант 6


  1. Каков период свободных колебаний в электрической цепи из конденсатора электроемкостью С и катушки индуктивностью L ?
А. ; Б. ; В. ; Г. 2π .

  1. Найдите максимальное значение переменного напряжения , если действующее значение U = 100 В.
А. 70,7 В; Б. 141,4 В; В. 200 В; Г. 50 В.

  1. Какую функцию выполняет колебательный контур радиоприемника?
А. Выделяет из электромагнитной волны модулирующий сигнал;

Б. Усиливает сигнал одной избранной волны;

В. Выделяет из всех электромагнитных волн совпадающие по частоте собственным колебаниям;

Г. Принимает все электромагнитные волны.


  1. Катушка индуктивностью L = 50 мГн присоединена к генератору переменного тока с U m = 44,4 В и частотой ν = 1 кГц. Какую силу тока покажет амперметр, включенный в цепь?

  1. Напряжение на обкладках конденсатора в колебательном контуре меняется по закону u = 100соs10 4 πt. Электроемкость конденсатора 0,9 мкФ (рис. 49). Найти индуктивность контура и максимальное значение энергии магнитного поля катушки.

В однородном магнитном поле движется с постоянной скоростью прямой проводник так, что вектор скорости перпендикулярен проводнику. Вектор индукции магнитного поля также перпендикулярен проводнику и составляет с вектором угол α = 30°. Затем этот же проводник начинают двигать с той же скоростью, в том же самом магнитном поле, но так, что угол α увеличивается в 2 раза. Как в результате этого изменятся следующие физические величины: модуль ЭДС индукции, возникающей в проводнике; модуль напряжённости электрического поля внутри проводника?

Для каждой величины определите соответствующий характер изменения:

1) увеличится;

2) уменьшится;

3) не изменится.

Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:

Решение.

ЭДС индукции для проводника движущемся в магнитном поле, перпендикулярном проводнику, рассчитывается по формуле: Следовательно, при увеличении угла между скоростью и направлением магнитного поля увеличится и ЭДС индукции в проводнике.

Модуль напряжённости электрического поля внутри проводника прямо пропорционален ЭДС индукции, следовательно, модуль напряжённости электрического поля также возрастёт.

Ответ: 11.

Юлия Горбачёва 14.04.2017 22:26

В системе отсчета проводника (где он неподвижен) возникает постоянное электрическое поле. Если проводник находится в постоянном электрическом поле, то величина напряженности электрического поля внутри него равна нулю.

Можно рассуждать по другому. Если внутри проводника есть напряженность электрического поля, то на носители заряда в проводнике (например, электроны) действует сила. Под действием этой силы носители заряда двигаются и в проводнике существует электрический ток. Таким образом, само утверждение, что внутри проводника существует отличная от нуля напряжённости элек­три­че­ско­го поля эквивалентно утверждению, что в проводнике поддерживается постоянный ток.

Наличие постоянного тока в проводнике, который не образует замкнутого контура - это нелепость, противоречащая закону сохранения заряда.

Антон

На заряды в рассматриваемом проводнике действуют две уравновешивающие друг друга силы: сила со стороны электрического поля, созданного перераспределёнными зарядами (во время переходного процесса в начале движения), и сила Лоренца со стороны магнитного поля. Не будь электрического поля магнитное поле вызвало бы электрический ток. Во время переходного процесса этот электрический ток и приводит к перераспределению зарядов в проводнике.

При от­лич­ной от нуля на­пряжённо­сти элек­три­че­ско­го поля в про­вод­ни­ке возникает ток, если нет сторонних сил, которые этот ток могут увеличить или уменьшить, в том числе и полностью скомпенсировать воздействие электрического поля.

А. → Б. ← В. Г. ↓

    Какова траектория движения электрона, влетевшего в однородное магнитное поле перпендикулярно линиям магнитной индукции?

А. окружность; Б. прямая; В. парабола; Г. винтовая линия.

    Определить энергию магнитного поля соленоида, в котором при силе тока 5 А возникает магнитный поток 0,5 Вб.

    Протон движется со скоростью 10 8 см/с перпендикулярно однородному магнитному полю с индукцией 1 Тл. Найти силу, действующую на протон, и радиус окружности, по которой он движется.

Контрольная работа №4.
«Электромагнитная индукция»

Вариант 1

    Катушка замкнута на гальванометр.

а) В катушку вдвигают постоянный магнит.

б) Катушку надевают на постоянный магнит.

Электрический ток возникает

А. только в случае а) ;

Б. только в случае б) ;

В. в обоих случаях;

Г. ни в одном из перечисленных случаев.

    Какая формула выражает закон электромагнитной индукции?

А. ε = Ι(R+r); Б. ε = -∆Ф/∆t; В. ε = vBlsinα; Г. ε = - L(∆I/∆t).

    Медное кольцо, находящееся в магнитном поле, поворачивается из положения, когда его плоскость параллельна линиям магнитной индукции, в перпендикулярное положение. Модуль магнитного потока при этом

А. увеличивается; Б. уменьшается;

В. не изменяется; Г. равен нулю.

    Какова индуктивность катушки, если при равномерном изменении в ней тока от 5 до 10 А за 0,1 с, возникает ЭДС самоиндукции, равная 20 В?

    Катушку с ничтожно малым сопротивлением и индуктивностью 3 Гн присоединяют к источнику тока с ЭДС 15 В и ничтожно малым внутренним сопротивлением. Через какой промежуток времени сила тока в катушке достигнет 50 А?

Вариант 2

    Медное кольцо находится во внешнем магнитном поле так, что плоскость кольца перпендикулярна линиям магнитной индукции. Индукция магнитного поля равномерно увеличивается. Индукционный ток в кольце

А. увеличивается; Б. уменьшается;

В. равен нулю; Г. постоянен.

    В медном кольце, плоскость которого перпендикулярна линиям магнитной индукции внешнего магнитного поля, течет индукционный ток, направление которого показано на рис. 38. Вектор направлен перпендикулярно плоскости рисунка от читателя. Модуль в этом случае

А. увеличивается; Б. уменьшается;

В. не изменяется; Г. нельзя сказать, как изменяется.

    За 3 секунды магнитный поток, пронизывающий проволочную рамку, равномерно увеличился с 6 Вб до 9 Вб. Чему равно при этом значение ЭДС индукции в рамке?

А. 1 В; Б. 2 В; В. 3 В; Г. 0 В.

    Какова скорость изменения силы тока в обмотке реле с индуктивностью 3,5 Гн, если в ней возбуждается ЭДС самоиндукции 105 В?

    Трансформатор с коэффициентом трансформации 10 понижает напряжение с 10 кВ до 800 В. При этом во вторичной обмотке идет ток 2 А. Найти сопротивление вторичной обмотки. Потерями энергии в первичной обмотке пренебречь.

Вариант 3

    Проводящий контур движется с постоянной скоростью в постоянном однородном магнитном поле так, что вектор магнитной индукции перпендикулярен плоскости контура (рис. 39). Вектор скорости контура перпендикулярен вектору. В этом случае с течением времени ЭДС индукции в контуре

А. увеличивается; Б. уменьшается;

В. постоянна и не равна нулю; Г. равна нулю

    Чему равна ЭДС самоиндукции в катушке индуктивностью L = 3 Гн при равномерном уменьшении силы тока от 5 А до 1 А за 2 секунды?

А. 6 В; Б. 9 В; В. 24 В; Г. 36 В.

    На рисунке 40 представлен график зависимости магнитного потока через проводящий неподвижный контур от времени. В каком интервале времени модуль ЭДС индукции в контуре равен нулю?

А. 0 – 1 с; Б. 1 – 3 с; В . 0 – 2 с; Г. 3 – 4 с.

    Катушка индуктивностью 1 Гнвключается на напряжение 20 В. Определить время, за которое сила тока в ней достигает 30 А.

    Проводник с активной длиной 15 см движется со скоростью 10 м/с перпендикулярно линиям индукции однородного магнитного поля с индукцией 2 Тл. Какая сила тока возникает в проводнике, если его замкнуть накоротко? Сопротивление цепи 0,5 Ом.

Вариант 4

    Магнитный поток в 1 Вб может быть выражен в СИ как

А. 1 Н·м²; Б. 1 Тл·м²; В. 1 Тл/с; Г. 1 Тл/м²

    Проводящий круговой контур перемещается поступательно с постоянной скоростью в направлении, указанном на рисунке 41, в поле прямолинейного проводника с током. Об индукционном токе в контуре можно сказать, что …

А. он направлен по часовой стрелке;

Б. он направлен против часовой стрелки;

В. он возникать не будет;

Г. его направление зависит от модуля индукции магнитного поля.

А. 0,5 Гн; Б. 2 Гн; В. 18 Гн;

Г.

    Какова индуктивность витка проволоки, если при силе тока 6 А создается магнитный поток 12·10 – 3 Вб? Зависит ли индуктивность витка от силы тока в нем?

    Какой заряд пройдет через поперечное сечение витка, сопротивление которого 0,05 Ом при уменьшении магнитного потока внутри витка на 15 мВб?

Вариант 5

    Проволочная рамка находится в однородном магнитном поле.

а) Рамку поворачивают вокруг одной из ее сторон.

б) Рамку двигают поперек линий индукции магнитного поля.

в) Рамку двигают вдоль линий индукции магнитного поля.

Электрический ток возникает

А. только в случае а; Б. только в случае б;

В. только в случае в; Г. во всех случаях.

    На рисунке 42 представлен график изменения силы тока в катушке индуктивностью 6 Гн при размыкании цепи. Оцените среднее значение ЭДС самоиндукции в промежуток времени 1 – 2 с.

А. 36 В; Б. 18 В; В. 9 В; Г. 3 В.

    Чему равна индуктивность проволочной рамки, если при силе тока I = 3 А в рамке возникает магнитный поток Ф = 6 Вб?

А. 0,5 Гн; Б. 2 Гн; В. 18 Гн; Г. среди перечисленных ответов нет правильного.

    Какова индукция магнитного поля, если в проводнике с длиной активной части 50 см, перемещающаяся со скоростью 10 м/с перпендикулярно вектору индукции, возбуждалась ЭДС 1,5 В?

    Алюминиевое кольцо расположено в однородном магнитном поле так, что его плоскость перпендикулярна вектору магнитной индукции. Диаметр кольца 25 см, толщина провода кольца 2 мм. Определить скорость изменения магнитной индукции со временем, если при этом в кольце возникает индукционный ток 12 А.Удельное сопротивление алюминия 2,8·10 -8 Ом·м.

Вариант 6

    Постоянный прямой магнит падает сквозь алюминиевое кольцо. Модуль ускорения падения магнита

А. в начале пролета кольца меньше g, в конце больше g;

Б. равен g; В. больше g; Г. меньше g.

    На рисунке 43 представлена электрическая схема. В какой лампе после замыкания ключа сила тока позже всего достигнет своего максимального значения?

А. 1 Б. 2 В. 3 Г. Во всех одновременно.

    Индуктивность L замкнутого проводящего контура определяется формулой

А . L = Ф/I Б . L = Ф·I

В . L = I/Ф Г . L = ∆ I/Ф

    Найдите ЭДС индукции на концах крыльев самолета (размах крыльев 36,5 м), летящего горизонтально со скоростью 900 км/ч, если вертикальная составляющая вектора индукции магнитного поля Земли 5·10 – 3 Тл.

    Два металлических стержня расположены вертикально и замкнуты вверху проводником. По этим стержням без трения и нарушения контакта скользит перемычка длиной 0,5 см и массой 1 г. Вся система находится в однородном магнитном поле с индукцией 0,01 Тл, перпендикулярной плоскости рамки. Установившаяся скорость 1 м/с. Найти сопротивление перемычки.

Контрольная работа № 5.
«Переменный ток»

Вариант 1

    Какая зависимость напряжения от времени t соответствует гармоническим колебаниям?

А. ; Б. ;

В. ; Г. .

    На графике (рис.44) приведена зависимость силы тока в цепи от времени. Чему равен период колебаний тока?

А. 0,5с; Б. 2 с; В. 1 с; Г. 3 с.

    Период свободных колебаний тока в электрическом контуре равен Т. В некоторый момент энергия электрического поля в конденсаторе достигает максимума. Через какое минимальное время после этого достигнет максимума энергия магнитного поля в катушке?

А. ; Б. ; В. ; Г. Т.

    Напишите уравнение гармонических колебаний напряжения на клеммах электрической цепи, если амплитуда колебаний 150 В, период колебаний 0,01 с, а начальная фаза равна нулю.

    Ток в колебательном контуре изменяется со временем по закону i =0,01соs1000t. Найти индуктивность контура, зная, что емкость его конденсатора 2·10 – 5 Ф.

Вариант 2

    Период колебаний равен 1 мс. Частота этих колебаний равна

А . 10 Гц; Б. 1 кГц; В. 10 кГц; Г. 1МГц

    Если электроемкость конденсатора в электрическом колебательном контуре уменьшится в 9 раз, то частота колебаний

А. увеличится в 9 раз; Б. увеличится в 3 раза;

В. уменьшится в 9 раз; Г. уменьшится в 3 раза.

    В цепь переменного тока включены последовательно резистор, конденсатор и катушка. Амплитуда колебаний напряжения на резисторе 3 В, на конденсаторе 5 В, на катушке 1 В. Чему равна амплитуда колебаний на участке цепи, состоящей из этих трех элементов?

А. 3 В; Б. 5 В; В. 5,7 В; Г. 9 В.

    По графику, изображенному на рисунке 45, определите амплитуду напряжения и период колебания. Запишите уравнение мгновенного значения напряжения.

    В колебательном контуре зависимость силы тока от времени описывается уравнением i = 0,06sin10 6 πt. Определить частоту электромагнитных колебаний и индуктивность катушки, если максимальная энергия магнитного поля 1,8·10 – 4 Дж.

Вариант 3

    Модуль наибольшего значения величины, изменяющейся по гармоническому закону, называется

А. периодом; Б. амплитудой;

В. частотой; Г. фазой.

    Изменение заряда конденсатора в колебательном контуре происходит по закону q = 3соs5t (q измеряется в микрокулонах, t – в секундах).

Амплитуда колебаний заряда равна

А. 3 мкКл; Б. 5 мкКл;

В . 6 мкКл; Г. 9 мкКл.

    На графике (рис. 46)приведена зависимость силы тока в цепи от времени. Чему равно действующее значение силы тока?

А. 0 А; Б. 0,5 А; В. А; Г. А.

    Значение силы тока, измеренное в амперах, задано уравнением i = 0,28sin50πt, где t выражено в секундах. Определите амплитуду силы тока, частоту и период.

    Напряжение на обкладках конденсатора в колебательном контуре изменяется по закону u = 50соs10 4 πt. Емкость конденсатора 0,9 мкФ. Найти индуктивность контура и закон изменения со временем силы тока в цепи.

Вариант 4

    Какое из приведенных ниже выражений определяет индуктивное сопротивление катушки индуктивностью L в цепи переменного тока частотой ω ?

А. ; Б. ωL ; В. ; Г. .

    В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Если с течением времени начальный заряд, сообщенный конденсатору, уменьшился в два раза, то полная энергия, запасенная в конденсаторе,

А. уменьшилась в два раза;

Б. увеличилась в два раза;

В. уменьшилась в 4 раза;

Г. не изменилась.

    Период свободных колебаний в контуре с ростом электроемкости

А. увеличивается;

Б. уменьшается;

В. не изменяется;

Г. всегда равен нулю.

    По графику, изображенному на рисунке 47, определите амплитуду напряжения, период и значение напряжения для фазы π/3 рад.

    Зависимость силы тока от времени в колебательном контуре определяется уравнением i = 0,02sin500πt. Индуктивность контура 0,1 Гн. Определить период электромагнитных колебаний, емкость контура, максимальную энергию магнитного и электрического полей.

Вариант 5

    Какое из приведенных ниже выражений определяет емкостное сопротивление конденсатора электроемкость С в цепи переменного тока частотой ω ?

А. ; Б. ; В. ; Г. ωС.

    Отношение действующего значения гармонического переменного тока к его амплитуде равно

А. ; Б. 1/ ; В. 2; Г. 1/2.

    Изменение заряда конденсатора в колебательном контуре происходит по закону q = 10 – 4 соs10πt (Кл). Чему равен период электромагнитных колебаний в контуре (время измеряется в секундах)?

А. 0,2 с; Б. π/5 с; В. 0,1π с; Г. 0,1 с.

    Конденсатор емкостью С = 5 мкФ подключен к цепи переменного тока с U m = 95,5 В и частотой ν = 1 кГц (рис. 48). Какую силу тока покажет амперметр, включенный в сеть? Сопротивлением амперметра можно пренебречь.

    Заряд на обкладках конденсатора колебательного контура изменяется по закону q = 3·10 – 7 соs800πt. Индуктивность контура 2 Гн. Пренебрегая активным сопротивлением, найти электроемкость конденсатора и максимальные значения энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Вариант 6

    Каков период свободных колебаний в электрической цепи из конденсатора электроемкостью С и катушки индуктивностью L ?

А. ; Б. ; В. ; Г. 2π .

    Найдите максимальное значение переменного напряжения, если действующее значение U = 100 В.

А. 70,7 В; Б. 141,4 В; В. 200 В; Г. 50 В.

А. Выделяет из электромагнитной волны модулирующий сигнал;

Б. Усиливает сигнал одной избранной волны;

В. Выделяет из всех электромагнитных волн совпадающие по частоте собственным колебаниям;

Г.

    Катушка индуктивностью L = 50 мГн присоединена к генератору переменного тока с U m = 44,4 В и частотой ν = 1 кГц. Какую силу тока покажет амперметр, включенный в цепь?

    Напряжение на обкладках конденсатора в колебательном контуре меняется по закону u = 100соs10 4 πt. Электроемкость конденсатора 0,9 мкФ (рис. 49). Найти индуктивность контура и максимальное значение энергии магнитного поля катушки.

Контрольная работа №6.
«Излучение и прием электромагнитных волн радио- и СВЧ-диапазона»

Вариант 1

    Как вдали от источника интенсивность электромагнитного излучения зависит от расстояния до него?

А. Прямо пропорционально;

Б. Обратно пропорционально;

В. Пропорционально квадрату расстояния;

Г. Обратно пропорционально квадрату расстояния.

    Частота инфракрасного излучения меньше частот всех перечисленных ниже, кроме…

А. видимого света;

Б. радиоволн;

В. ультрафиолетового излучения;

Г. рентгеновского излучения.

    Источником электромагнитных волн является…

А. постоянный ток;

Б. неподвижный заряд;

В. любая ускоренно движущаяся частица;

Г. любая ускоренно движущаяся заряженная частица.

    Напряженность электрического поля бегущей электромагнитной волны в СИ задана уравнением Е = 5·10² sin(3·10 6 π(x – 3·10 8 t х.

    Высота излучающей антенны телецентра над уровнем Земли 300 м, а высота приемной антенны 10 м. На каком предельном расстоянии от передатчика можно вести прием?

Вариант 2

    Какие из перечисленных ниже волн не являются поперечными?

А. Инфракрасные;

Б. Видимые;

В. Звуковые;

Г. Радиоволны.

    Интенсивность электромагнитной волны зависит от напряженности электрического поля в волне:

А. ~Е ; Б. ~ Е ²; В. ~ ; Г. ~ .

    Частота излучения желтого света ν = 5,14·10 14 Гц. Найдите длину волны желтого света.

А. 580 нм; Б. 575 нм; В. 570 нм; Г. 565 нм.

    Напряженность поля бегущей электромагнитной волны в СИ задана уравнением
    Е = 10²sin(4·10 6 π(2·10 8 t + x )). Найдите амплитуду, частоту волны и скорость ее распространения вдоль оси x.

    Радиолокатор работает на волне 15 см и испускает импульсы с частотой 4 кГц. Длительность каждого импульса 2 мкс. Какова наибольшая дальность обнаружения цели? Сколько колебаний содержится в одном импульсе?

Вариант 3

    Существует ли такое движение электрического заряда, при котором он не излучает электромагнитные волны?

А. Такого движения нет.

Б. Существует, это равномерное прямолинейное движение.

В. Существует, это равномерное движение по окружности.

Г. Существует, это прямолинейное равноускоренное движение.

    Плотность потока электромагнитного излучения равна 0,03 Вт/см². В единицах Вт/м² она будет равна

А. 0,0003; Б. 3; В. 30; Г. 300.

    Какую функцию выполняет колебательный контур радиоприемника?

А . Выделяет из электромагнитной волны модулирующий сигнал.

Б.

В.

Г. Принимает все электромагнитные волны.

    i = 0,5соs 8·10 5 πt. Найти длину излучаемой волны.

    Какова длина волны электромагнитного излучения колебательного контура, если конденсатор имеет емкость 2 пФ, скорость изменения силы тока в катушке индуктивности равна 4 А/с, а возникающая ЭДС индукции составляет 0,04 В?

Вариант 4

    В каких направлениях совершаются колебания в поперечной волне?

А. Во всех направлениях.

Б. Только по направлению распространения волны.

В. Только перпендикулярно направлению распространения волны.

Г. По направлению распространения волны и перпендикулярно этому направлению.

    Радиоприемник настроен на длину волны 100 м. Собственная частота входного колебательного контура равна

А. 3 Гц; Б. 300 кГц; В. 3 кГц; Г. 3 МГц.

    Какую функцию выполняет антенна радиоприемника?

А. Выделяет из электромагнитной волны модулирующий сигнал.

Б. Усиливает сигнал одной избранной волны.

В. Выделяет из всех электромагнитных волн совпадающие по частоте собственным колебаниям.

Г. Принимает все электромагнитные волны.

    Электромагнитные волны распространяются в некоторой однородной среде со скоростью 2·10 8 м/с. Какую длину волны имеют электромагнитные колебания в этой среде, если их частота в вакууме

    При изменении тока в катушке индуктивности на величину 1 А за время 0,6 с в ней индуцируется ЭДС 0,2 мВ. Какую длину будет иметь радиоволна, излучаемая генератором, колебательный контур которого состоит из этой катушки и конденсатора емкостью 14,1нФ?

Вариант 5

    При распространении в вакууме электромагнитной волны…

А. происходит только перенос энергии;

Б. происходит только перенос импульса;

В. происходит перенос и энергии, и импульса;

Г. не происходит переноса ни энергии, ни импульса.

    Как изменится интенсивность излучения электромагнитных волн при одинаковой амплитуде их колебаний в вибраторе, если частоту колебаний увеличить в 2 раза?

А. Не изменится.

Б. Увеличится в 2 раза.

В. Увеличится в 4 раза.

Г. Увеличится в 16 раз.

    Расположите перечисленные ниже виды электромагнитных волн в порядке увеличения длины волны:

А. видимый свет;

Б. радиоволны;

В. рентгеновское излучение;

Г. инфракрасное излучение.

    Сила тока в открытом колебательном контуре изменяется в зависимости от времени по закону i = 0,8sin4·10 5 πt. Найти длину излучаемой волны.

    Сколько электромагнитных колебаний с длиной волны 375 м происходит в течение одного периода звука с частотой 500 Гц, произносимого перед магнитофоном передающей станции?

Вариант 6

    Рассмотрим два случая движения электрона в вакууме:

а) Электрон движется равномерно и прямолинейно.

б) Электрон движется равноускоренно и прямолинейно.

В каких случаях происходит излучение электромагнитных волн?

А. а. Б. б. В. а) и б). Г. Ни а), ни б).

    Какое из перечисленных устройств не является необходимым в радиопередатчике?

А. Антенна. Б. Колебательный контур.

В. Детектор. Г. Генератор незатухающих колебаний.

    Среди волн длинного, короткого и ультракороткого диапазона наибольшую скорость распространения в вакууме имеют волны…

А. длинного диапазона;

Б. короткого диапазона;

В. ультракороткого диапазона;

Г. скорости распространения всех волн одинаковы.

    Радиолокационная станция посылает в некоторую среду электромагнитные волны длиной 10 см при частоте 2,25 ГГц. Чему равна скорость волн в этой среде и какую будут иметь длину электромагнитные волны в вакууме?

    На каком предельном расстоянии может быть обнаружена цель на поверхности моря корабельным радиолокатором, расположенным на высоте 8 м над уровнем моря? Каким должен быть минимальный промежуток времени между соседними импульсами такого локатора?

Контрольная работа №7.
«Отражение и преломление света»

Вариант 1

    Каким явлением можно объяснить красный цвет предметов?

А. Излучением предметом красного света;

Б. Отражением предметом красного цвета;

В. Поглощением предметом красного света;

Г. Пропусканием предметом красного света.

    Укажите характеристики изображения предмета в плоском зеркале.

А. Мнимое, прямое, равное по размеру предмету.

Б. Действительное, прямое, равное по размеру предмету.

В. Мнимое, перевернутое, уменьшенное.

Г. Мнимое, прямое, уменьшенное.

    За стеклянной призмой происходит разложение белого света в цветной спектр. Какой из лучей, перечисленных ниже цветов, отклоняется призмой на больший угол?

А. Зеленый.

Б. Желтый.

В. Фиолетовый.

Г. Красный.

    Начертить ход луча света через стеклянную призму, изображенную на рисунке 50.

    Найти положение изображения объекта, расположенного на расстоянии 4 см от передней поверхности плоскопараллельной стеклянной пластинки толщиной 1 см, посеребренной с задней стороны, считая, что показатель преломления пластинки равен 1,5. Изображение рассматривается перпендикулярно к поверхности пластинки.

Вариант 2

    Днем лунное небо, в отличие от земного, черного цвета. Это явление – следствие того, что на Луне…

А. нет океанов, отражающих солнечный свет;

Б. очень холодно;

В. нет атмосферы;

Г. почва черного цвета.

    Человек движется перпендикулярно к зеркалу со скоростью 1 м/с. Его изображение приближается к нему со скоростью…

А. 0,5 м/с. Б. 1 м/с. В. 2 м/с. Г. 3 м/с.

    За стеклянной призмой происходит разложение белого цвета в цветной спектр. Какой из лучей, перечисленных ниже цветов, отклоняется призмой на наименьший угол?

А. Зеленый. Б. Желтый.

В. Фиолетовый. Г. Красный.


    Построить дальнейший ход луча в призме, если угол падения 70º, а показатель преломления 1,6 (рис. 51).

Вариант 3

    При каком условии плоское зеркало может дать действительное изображение?

А. Ни при каком.

Б. Если на зеркало падает параллельный световой пучок.

В. Если на зеркало падает сходящийся световой пучок.

  • Аналитическая справка по итогам проведения городской контрольной работы по физике в 8 классах муниципальных общеобразовательных учреждений

    Контрольная работа

    Аналитическая справка по итогам проведения городской контрольной работы по физике в 8 классах муниципальных общеобразовательных учреждений. 02.02.2012 ... получивших зачёт в школах №2, 11 , 18, 1, 4, 16. Показатели выше среднего по городу у школ № 9, 22, ...

  • Учебно-методические комплекты Касьянова физике для 10-11 классов общеобразовательных школ (базовый

    Программа

    Комплекты по физике для 10-11 классов общеобразовательной школы , ... контрольных работ . 11 класс (профильный уровень)». «Методические рекомендации по использованию учебников В.А.Касьянова «Физика . 10 класс» , «Физика .11 класс» при изучении физики ...

  • Методика многоуровнего использования учебно-методического комплекта касьянова физике для 10-11 классов общеобразовательных школ

    Список учебников

    ... по физике для 10-11 классов общеобразовательной школы , выпущенный в 2000-2002 г.г. издательством «Дрофа», включает: Учебник «Физика . 10 класс» ... 10 класс» , «Тематическое и поурочное планирование. 11 класс» содержат два варианта контрольных работ по всем...

  • Рабочая программа по физике для 11 класса учителя физики

    Рабочая программа

    ... по физике .11 класс . – М.: ВАКО, 2006. Кирик Л.А. Физика -11 . Разноуровневые самостоятельные и контрольные работы .- ... 11 классы : пособие для общеобразовательных учреждений. – М.: Дрофа, 2007. Уроки физики Кирилла и Мефодия. 11 класс .- Виртуальная школа ...

  • Рабочая программа по физике 11 класс базовый уровень 2012 - 2013 учебный год

    Рабочая программа

    ... ПО физике для 11 класса общеобразовательной школы ... работы по физике в 7-11 классах общеобразовательных ... контрольные и самостоятельные работы по физике . 11класс/О.И.Громцева. –М.: Издательство «Экзамен», 2012. -142с. Зорин Н.И. Тесты по физике ...